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ABSTRACT 
We review the physical background of the voltage-dependent 
capacitance of class 2 Multilayer Ceramic Capacitors (MLCC) 
and present models for this dependency. Two processes can 
be distinguished, leading to an immediate as well as a long-
term capacitance dependence on dc voltage. Both processes 
are related to the ferroelectric properties of class 2 materials. 
The immediate process is related to the dipole reorientation 
within the material domain structure. The origin of the long-
time DC effect, still discussed in the scientific community, is 
likely to be related to domain wall movement. We will also 
discuss the influence of the two processes on the application 
of MLCCs. 

01. MOTIVATION AND BACKGROUND 
For the design-in process, it has become a common 
procedure to employ simulation software such as SPICE. The 
developer may load files for multilayer ceramic capacitors 
(MLCCs) into the software to simulate the influence of the 
voltage and frequency behavior of the MLCC on the circuit. To 
make this simulation computationally efficient, it is necessary 
to implement elegant mathematical models for the MLCCs. 

This article briefly reviews the physical background of the 
voltage-dependent capacitance of class 2 MLCCs. 
Furthermore, it describes the mathematical polarization 
model's development, suitable for simulation software 
implementation. An important dielectric property that 
ceramics can exhibit is ferroelectricity. Ferroelectricity 
describes the property of a material to form electric dipoles 
without applying an electric field. Ferroelectricity only occurs 
in crystals that have a unit cell with no center of symmetry, 
i.e. non-centrosymmetric shape.[1] [2] [3] [4] [5] 

In a ferroelectric material, such as barium titanate, all direct 
and indirect neighboring cells form the aforementioned 
dipoles, which point in the same direction. Figure 1 depicts a 
simplified unit cell of the barium titanate unit cell with a 
permanent dipole. The alignment of neighboring dipoles is a 
result of total energy reduction due to dipole-dipole 
interactions. The ferroelectric attempts to attain a domain 
configuration that minimizes the total energy while satisfying 
both electrostatic and mechanical boundary conditions. 

[6] In an idealized system, all the dipoles in the crystalline 
material would collectively point in one direction. Real 
materials, however, always have minor imperfections that 
cause the collective orientation of the dipoles to be limited to 
areas called domains. The size of the domains, crystal 
configurations at domain boundaries and the orientation of 
the dipoles within the domains influence the polarizability 
and, thus, the permittivity of the material. [7] [8] This is why 
MLCCs produced from different raw materials will have 
different ferroelectric behavior. [1] [9] [10] 

Above the Curie temperature, which is specific for each 
ferroelectric material, this collective alignment is destroyed. In 
this phase, the dipoles are randomly aligned and no longer 
show a domain structure. Under these conditions, the 
material has paraelectric properties. [11] Ferroelectric 
materials always show some degree of paraelectric behavior. 
Paraelectricity may also be induced by chemical additives, 
which introduce defective sites and consequently prevent the 
formation of domains. 
Compared to other materials, ferroelectrics, such as barium 
titanate, have a high polarizability and thus, a high relative 
permittivity. Barium titanate-based MLCCs have the benefit 
of combining low losses with high capacitance and small 
structural shape. This property makes MLCCs one of the most 
important passive components for switching converter 
circuits and filter applications. [10] 
The trade-off for the large capacitance in ferroelectric class 2 
MLCCs is the above-mentioned voltage dependence that 

 
Figure 1: Configuration of the barium titanate unit cell below the 
Curie temperature. The barium ion is shifted from the center of the 
unit cell along the vertical axis. The shift is permanent and caused 
by internal stress of the unit cell 
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leads to a disadvantageous decrease of capacitance with 
increasing dc - voltage. In the further course of this article, 
we will first explain the polarization processes and second 
develop a model, designed to describe the voltage-
dependent capacitance. 

02. EXPERIMENTAL DETAILS 
Before the measurements, all capacitors (885012209073) 
have been annealed for at least 1 h at 150 °C. The 
subsequent cool-down time was 24 h. All measurements 
were performed at room temperature. 

For the hysteresis and time-dependent measurement, the 
LCR meter E4980A from Keysight was used in conjunction 
with the test fixture 16034G. The ac probing voltage 
amplitude of the LCR meter was Vrms = 1 V and the 
corresponding probing frequency was 1 kHz. The fixed signal 
amplitude is guaranteed by the Automatic Level Control 
which monitors the voltage level at the DUT and adapts the 
voltage level at the source. 

03. IMMEDIATE POLARIZATION EFFECTS ON 
CAPACITANCE-VOLTAGE MEASUREMENTS 

Ferroelectric polarization is well studied and shall be 
reviewed briefly. [1] [9] [13] The polarization behavior of 
ferroelectric materials depends on the actual state of 
polarization, as shall be discussed with the capacitance-
voltage and polarization-voltage graphs of a 10 µF MLCC 
(X7R class 2), shown in Figure 2. The choice fell on this 
capacitor since it shows a pronounced dc - dependence, 
which is typical for this type. 

During the measurement, a sinus probing waveform of 
frequency f is applied to measure the capacitance of the 
capacitor. The ac probing waveform has a fixed amplitude 
throughout the measurement and induces a periodical change 
of voltage dV. On the sinus signal, a dc voltage is 
superimposed, allowing the reorientation of the domain 
polarization. This reorientation takes place on a sub-second 
time scale and is thus an immediate polarization effect. 

Branch 1 
The capacitor, with randomly distributed domain 
polarizations, is subjected to the test signal. With the increase 
of dc voltage, the dipoles eventually become aligned, leading 
to increased polarization (Figure 2). The saturation 
polarization is reached, if all dipoles point in the direction of 
the external electric field (dc - voltage).

As the voltage increases, the dipoles become aligned and the 
dipole movement becomes more restricted, which leads to a 
reduced change of charge dq. Hence, the capacitance 
C = dq / dV decreases with increasing dc voltage. 

When the applied external field E, which is proportional to the 
applied voltage, has aligned the majority of the domains, the 
dipoles remain in this position even without the external field. 
The collective alignment creates an internal stabilizing 
coercive field, Ec. As the applied electric field increases, the 
overall polarization increases due to other polarization effects 
such as electronic, ionic and dipolar types. 

The polarization at maximum voltage is referred to as 
saturation polarization Psat. In principle, the spontaneous 
polarization Ps is equal to the saturation polarization of the 
electric displacement extrapolated to zero field strength. 
 

 

 
Figure 2: Measured capacitance-voltage characteristics of 10 µF 
MLCC, for a dc voltage cycle, shown in the inset graph. BOTTOM: 
Polarization-voltage characteristics with corresponding schematic 
depiction of dipole orientation 
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Branch 2 
As the voltage, and with that, the external field, is reversed 
from positive to negative, the dipoles relax slightly but remain 
in their overall polarization direction due to the internal 
coercive field, Ec. The polarization state at zero volts is 
referred to as remanent polarization Pr. 
Any reversed external electric field will have to exceed Ec in 
order to reorient all domains into the opposite direction. At 
the position of Ec the strain on the dipoles is least, thus the 
materials permittivity (susceptibility) is largest and the 
capacitance shows a local maximum. With the increase of 
polarization into the opposite direction, the capacitance 
decreases to the same value as for positive voltages. 

Branch 3 
If the voltage is driven from negative to positive, the dipoles 
reorient again when the externally applied field exceeds the 
coercive field. This, again, leads to a peak at the capacitance at 
low positive voltage. The process is similar to the one 
described before. Branch 3 is similar to branch 2, except it is 
shifted along the x-axis toward positive voltages. 

The above-described hysteresis requires the distinction 
between the polarizations for voltage sweeps from positive to 
negative and vice versa. Therefore, in the further course, P+(E) 
denotes the polarization (branch 2) for voltage sweeps from 
positive to negative and P-(E) (branch 3) the polarization for 
voltage weeps from negative to positive voltages. 

Hence, any increase in dc voltage leads to a decrease in 
capacitance. However, the capacitance is further decreased 
with an increasing application time of dc voltage. That further 
decrease is related to the retarded movement of the domain 
walls, caused by domain wall pinning. [14] [15] [16] [17] [18] Domain 
wall motion takes place on a longer timescale than the initial 
reorientation of dipoles, which occurs on a sub-second 
timescale. [19] Domain wall movement generally leads to an 
additional gradual decrease of the capacitance of up to 20%, 
which can take place over a period of up to 1000 hours. [14] [15] 

Besides the domain wall movement, a field-induced phase 
transition may occur on some pristine barium titanate 
compounds [20] [21]. During this process, the unit cell undergoes 
a structural change, resulting in the formation of the 
permanent dipole. This kind of phase transition causes a peak 
in the capacitance-voltage measurements even during the 
first sweep (branch 1), which is similar to the one exhibited 
during the reorientation of the dipoles (in branch 2 and 
branch 3). Hence, the origin of the peak is not the 
reorientation of the dipoles but the reconfiguration of the unit 

cell in at least some fractions of the material. Such a behavior 
is not visible in this measurement shown here but may be in 
others. 

The physics of ferroelectric and paraelectric materials are well 
discussed in scientific literature, which provides a solid basis 
for the development of a model suitable for technical 
applications such as electrical circuit simulation. [1] [13][22][23] 
The parameters are related to measurable and physically 
meaningful quantities such as remanent and spontaneous 
polarization. 
A model that is based on an ideal polarization behavior [13] is: 

 C(V) = (a - CS) · sechC �
V - VC

b �  + CS (1) 

with CS as the quasi-linear contribution to the capacitance 
(voltage-independent pure capacitive part), VC as the coercive 
voltage (VC ∝ Ec), a as the factor proportional to saturation 
polarization, b as the factor related to the width of the bell-
shaped curve and c a slope form factor. The advantage of this 
model is that a, b, CS and VC can be retrieved directly from the 
measured data, i.e. no fitting is required. CS is the capacitance 
at the maximum voltage, (a - CS) is the height of the peak 
(max. of C(V)), VC is the position of the peak and b can be 
calculated from C(V) with the inverse of the hyperbolic secant. 

Whether or not the polarization model originally published by 
Miller et al. [13] is based on first principles is of no importance 
at this point. What is relevant is the numerical simplicity, since 
the parameters can be clearly related to characteristic 
features of the measured data. Consequently, this leads to a 
situation where the set of parameters is relatively small and 
easily retrievable from the measurement. 
Figure 3 shows a C - V measurement of a 10 µF class 2 MLCC, 
which was measured with consecutive voltage sweeps, along 
with a fitted equation (1). 

 
Figure 3: Measured capacitance-voltage characteristic of 10 µF 
MLCC with the corresponding fit of equation 1. Dimensionless 
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numerical fit-parameters: a = 10.85, b = 1.3, c = 0.17, Cs = 1.09, 
VC = 2.5 

Although the fit is not perfect, especially the features 
between - 10 V and + 10 V are well described by the model. 
The two visible peaks of the positive and negative branch 
occur, if the external field reaches the coercive field strength 
and cause a reversal of the dipole orientation. At this 
moment, the dipoles have large mobility, i.e. the change of 
charge is large. Thus the capacitance has a local maximum at 
this position. [1] 

04. AGING EFFECTS ON 
CAPACITANCE - VOLTAGE MEASUREMENTS 
A long-term effect, also known as aging or second-stage 
process, will lead to a further decrease of capacitance over 
time. There is and has been, for many years, a discussion 
going on in the literature about the exact origin of this long-
term capacitance decrease. [24] [25] [26] [27] [28] 

To mention two of several possible explanations: Some 
propose that the reduction of dielectric permittivity is due to 
the permittivity difference between two domains with 
orientations of 90 ° to each other. [15] It is argued that with 
time the domains with 90 ° polarization become orientated 
along the applied field. Since the domains with 90 ° 
polarization have higher polarizability than the ones parallel to 
the applied field, the overall permittivity is decreased as the 
90 ° polarized domains are realigned. 

Others propose that the effect is due to the diminished 
contribution of the domain wall region itself. [16] They argue 
that domain wall regions have comparatively large 
polarizability/permittivity and that the diminishing of the 
walls leads to a decrease in overall polarizability and, thus the 
overall permittivity, i.e. capacitance decrease. 

Both mentioned explanations are related to the retarded 
movement of the domain walls, caused by domain wall 
pinning [14] [15] [16] [17]. This effect leads to a further gradual 
decrease of the capacitance upon applied dc voltages over a 
period of hours. Since domain wall movement is an essential 
process in several explanations, it is worthwhile to review it in 
the following. 
Figure 1 depicts a simplified unit cell that has a cubic 
structure. Due to structural stress within the lattice and/or 
applied electric fields, the unit cell can be stretched and tilted. 
This not only allows the displacement of the Ti-ion along this 
one vertical axis, as indicated in Figure 1, but also along other 
directions, leading to domains that have polarizations with an 
angle of 90 ° to each other, as is shown in Figure 4. [24] The 

boundaries between these domains, also known as 90 ° 
domain walls, are regions with higher polarizability than the 
domains themselves. [18] 

 
Figure 4: Schematic depiction of defect site in lattice (top) and 
simplified illustration of long-term process of domain wall motion 
under electric field application from its initial (bottom-left) to its final 
state (bottom-right) 

Those domain walls stabilize their position at defect sites, i.e. 
defect dipoles. The continuous application of a dc field moves 
electrons to eliminate the defect dipoles with time. This 
enhances the domain-wall motion to align the 90 ° polarized 
domains of BaTiO3 to the electric field direction. 

We want to refrain from discussing further proposed 
explanations of the long-term process. Researchers have not 
yet agreed on a unified explanation of the aging process. No 
matter what process is causing the capacitance decrease, 
more important for the practical application is the actual 
magnitude and description of the effect. The long-term effect 
is exemplified at a 10 µF MLCC (PN: 885012209073) with a 
rated voltage of 50 V, in Figure 5. 

 
Figure 5: Measured capacitance vs. time for three different dc 
voltages. (Measurement frequency f = 1 kHz) Measurement starts 
10 seconds after the application of the dc voltage. The decrease of 
capacitance is associated to long-term polarization process 
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The capacitance-time graphs are measured at 100%, 80% and 
50% of the capacitor’s rated voltage over a period of about 
160 h. The measurement starts about 10 seconds after the 
application of the dc voltage. The graphs clearly show the 
larger the dc voltage the larger the overall decrease of the 
capacitance. In this example, the saturation capacitance is 
reached in about 1 h or so. Other examples reach saturation 
after 10 h. [14] [15] Beyond this time the capacitance remains 
almost constant or decreases at an even slower rate. 
It is worthwhile to point out that the decrease relative to the 
rated voltage, due to the long-term process, is less 
pronounced than for the immediate process. The relative 
capacitance in Figure 6 shows that the capacitance values 
start already between 23% (50% of VR) and 12% (100% of VR). 

 
Figure 6: Measured relative capacitance vs. time for three different 
dc voltages in reference to VR. (Measurement frequency f = 1 kHz) 
Compare to Figure 5 

The long-term decrease in this example is about 3% for 100% 
of VR, 4% for 80% of VR and 8% for 50% of VR. This change is 
below the production tolerance of ± 10%. The lower the dc 
voltage the larger the additional capacitance decrease. 

Even at very small or no dc voltage, the MLCC will experience 
a slight capacitance decrease of about 10% to 20% (relative to 
rated capacitance) over a time of about 1000 h. [15] [28] [29] This 
is typical behavior for this capacitor technology, although 
slight variations between different products may occur, 
depending on the grain size or the chemical additives of the 
used ceramic material. [15] [16] [19] The capacitance decrease is 
voltage as well as temperature dependent. Consequently, 
from an experimental point of view, it is laborious to measure 
all parameters over such a long period of time. However, a 
prudent and practical rule of thumb is to add another 10% 
capacitance decrease for voltages above 50% of VR and 20% 
capacitance decrease for dc voltages below 50% of VR. 
Some documentation or publication presents the relative 
change not in reference to VR but to the decreased 

capacitance value after the immediate process. This has the 
effect that the relative change due to the long-term process 
appears larger in numbers. Such representation may be 
justified in one case or another; however, it neglects the 
capacitance decrease due to the effects of the first immediate 
process. Therefore, such representations do not provide 
information about the overall capacitance decrease and may 
therefore not directly be used by the electrical engineer for 
the calculations of effective capacitances. 
A model of the long-time effect on the capacitance, related to 
physically measurable parameters, is 

 Cl(t) = (C0 - C∞) · Exp �- �
t
τ�

α

�  + C∞  (2) 

with C0 = C(V) as capacitance at the beginning of the long-
time process, C∞ as saturation capacitance (at the end of the 
long-time process), τ as a characteristic time as well as α as 
form factor. [14] [26] The practicality of the model is exemplarily 
demonstrated in the measurements in Figure 5 with the 
parameters listed in Table 1. 

 α τ C0 C∞ 

50% VR 0.3 0.025 2.8 1.55 

80% VR 0.3 0.010 1.68 1.05 

100% VR 0.3 0.005 1.4 0.9 

Table 1: Parameters as used for fitting the capacitance 
measurements in Figure 5 

05. CONCLUSION AND CONSEQUENCE 
FOR THE DESIGN-IN PROCESS 
After introducing ferroelectricity, we have discussed the 
influence of immediate and long-term application of dc - bias 
voltage on capacitance measurements. The capacitance 
decrease due to the initial application is larger than for the 
subsequent long-term application. Although at lower 
voltages, the effect over the long-term becomes increasingly 
prominent. Thus, both effects have to be considered in the 
design-in process. It has been demonstrated the effects can 
be well described by mathematical models. Since both models 
are related to physically meaningful parameters, they are well 
suited to be used in the design-in process to calculate the 
actual usable capacitance. 

In consequence, for the circuit design, it is necessary to know 
the application-specific dc voltage load, as well as operation 
time to make the right choice of MLCC. The best strategy is to 
anticipate the capacitance decrease and oversize in terms of 
rated voltage or capacitance accordingly. To do that it is 
necessary to know the actual magnitude of the short as well 
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as long-term capacitance decrease. For that, one may use 
either educated approximations based on literature, actual 
measurements or models as implemented in the Würth 
Elektronik LTspice libraries. The mentioned LTspice models 
are based on actual measurements and model the prominent 
short-term effect for each part specifically. 
To account for the long-time effect, it is most practical to add 
a further 10% capacitance decrease for voltages above 50% of 
VR and 20% capacitance decrease for dc voltages below 50% 
of VR. The fact that this long-time process is also taking place 
at zero voltages is relevant for applications with long off-
times. It would, however, not have any negative effect on 
parts with long storage times in warehouses before 

the actual assembly and soldering, since the soldering 
temperatures are above the Curie temperature. 
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