WURTH ELEKTRONIK MORE THAN YOU EXPECT

CDM-A16

Control & Diagnostic Module

The **CDM-A16 module** is a slot-in controller for power distribution systems in vehicles and extends them with programmable control and diagnostic functions. The module provides up to **16 channels** for fuse status monitoring and relay activation. The peak-and-hold function reduces heat generation in the relay coil, thus extending the possible operating time. **The vertical design** of the module reduces the required space and thus allowing the integration of additional relays and fuses into the power distribution system.

Functions

- Fuse status monitoring and relay control with peak-andhold function
- CAN communication with multiple buses, enabling gateway functionality (J1939, RAW CAN bus protocols)
- Logic processing of vehicle functions, programmed with WEcontrol Designer, an IEC61131-3 programming environment (FBD, ST, SFC, etc.)
- Sensor management (current, temperature, etc.) with 5 V supply and sensor acquisition via 8 analogue inputs
- Direct load control via 4 digital outputs (2 A / PWM)

Technical data

General information		
Housing	Standard CDM-A16	
Connectors	EDAC slide in 50 pins 2 x Powerelements	
Dimensions	97.7 x 25.3 x 52 mm (incl. mounting material)	
Weight	~68g	
Operating temperature	-30°C to 85°C	
Storage temperature	-40°C to 85°C	
Ingress protection	IP20	
Operating voltage	9 to 32V	
Pre-fusing (recommended)	10 A main supply	
Current consumption	active (no output) < 70 mA	
Current Consumption	sleep mode < 2 mA	
Processor type	NXP S 32K Cortex M4 32 bit	
Clock frequency	80 MHz	
Flash memory	2 MB	
RAM	256 kB	
FRAM	2 kB	

Inpu	uts / Outputs overview		
1 Vref 5 V max 400 mA / switchable		max 400 mA / switchable	
8	Analogue inputs	0 – 5 V, 0 – 10 V, 0 – 16 V or 0 – 30 V (depending on variant)	
2	CAN interface	CAN 2.0 high speed	
16 Digital inputs 0 – Vbat (di		0 – Vbat (disconnected in off state)	
16 Digital outputs LS Low side 300 mA (PWM) With		Low side 300 mA (PWM) With diagnosis	
4 Digital outputs I		High side 2 A (PWM) with current sense	

Analogue input configuration depending on module variant (see order information)		
Analogue inputs	5 V	
Input range	0 – 5.5 V	
Resolution	12 bit	
Input impedance	200 KΩ (within range)	
Analogue inputs	10 V	
Input range	0 – 11.8 V	
Resolution	12 bit	
Input impedance	230 KΩ (within range)	
Analogue inputs	16 V	
Input range	0 – 17.5 V	
Resolution	12 bit	
Input impedance	200 KΩ (within range)	
Analogue inputs	32 V	
Input range	0 – 35.7 V	
Resolution	12 bit	
Input impedance	170 KΩ (within range)	

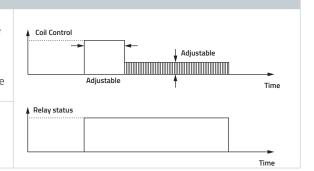
Built-in sensors	
Analogue inputs	Vsupply
Input range	0 – 32V
Temperature	On-board sensor
Input range	-40°C to 150°C (operating limit -30°C)
Analogue inputs	5 V sensor supply output
Input range	5.9 V
Current limitation	660 mA

Electrical schematic

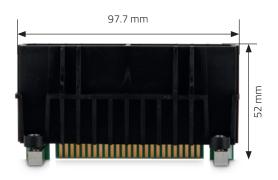
Digital inputs	
Digital input	16 x high active digital input
Max. acceptable voltage	32 V
Threshold levels	Lo Hi: ≥ 6.5 V Hi Lo: ≤ 2.5 V
Impedance	on- & off- state) Operating: ≥ 38 kΩ Standby: disconnected by MOSFET
Digital input KL15	1 x high active digital input
Max acceptable voltage	32 V
Threshold levels wake-up from standby	Lo->Hi: ≥ 5.5 V (wake up) Hi->Lo: ≤ 3.5 V (go to sleep)
Threshold levels input state by MCU	Lo ® Hi: ≥ 7.0 V (high) Hi ® Lo: ≤ 3.0 V (low)
Impedance	≥ 40 kΩ

Digital outputs		
High side outputs	4 x 2 A	
Current	2 A digital / 1 A PWM	
Current sense max	5 A	
Diagnosis	Overload detection A fault state sets max current to current measurement	
Frequency	2 A at 500 Hz / 1 A at 1 KHz	
Low side outputs	16 x	
Diagnosis	Open load detection Overload detection 2 channels share one diagnosis signal	
Max. current	single channel: 700 mA dual channel: 400 mA each depending on loads of system	
Frequency	15 KHz recommended, up to 30 KHz possible	

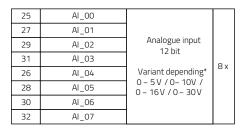
Intend of use and disclaimer	ntend of use and disclaimer		
Temperature sensors	The temperature sensor is only an indication and is here to give a rough idea about the status of the product, no specific behaviour has been designed in regarding this sensor value. The final application is free to define some behaviours based on the temperature. The sensor is placed next to the low-side component of pins 36 and 38.		
	High side outputs 4 independent frequencies and duty cycles for each of the 4 outputs. Current feedback in PWM mode can only be used possibly for open load detection and not for current sensing.		
DIA/M outputs	Low side output channel 1 frequency settable for outputs in group 0 – 7 1 frequency settable for outputs in group 8 – 15		
PWM outputs	If different frequencies are set, the first activated output will set the frequency for the whole output group, until they are all switched off again. The frequency for a group can only be changed if none, or only one output is activated. The duty cycle can be freely set at any time for each output, independently.		
	For EMC reasons it is not recommended to use PWM signals outside of the system (e.g. outside of the REDline Power Box Twin or any other power board to which the CDM-A16 is connected.).		
High side	On the high side, the current feedback information can be used to detect short circuits or overloads. Actions can then be programmed in the main application.		
UDS and CAN bus communication	n		
CAN speed	The allowed CAN speed are 100 / 125 / 250 / 500/ 1000 kbits/s (500 kb/s default)		
UDS / CAN 0 port	CAN 0 port is used for the WEcontrol Designer debugging interface and for UDS programming. The following IDs are reserved by default for our purposes: 0 x 100 / 0 x 7E0 / 0 x 7DF / 0 x 7E8		


Peak and hold drive

Peak and hold technology is a method of driving relays by applying a high current to the relay for a short time to quickly energise it, then reducing the current to a lower level to hold the relay in its energised state.

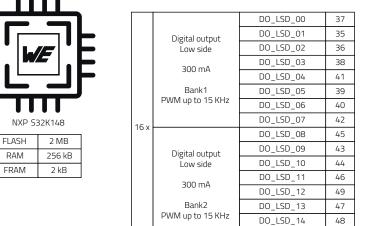

current to a lower level to hold the relay in its energised state.
This approach reduces heat generation and power consumption while maintaining fast response times. Peak and hold uses pulse width modulation (PWM) to reduce the average voltage and is compensated based on the supply voltage.

Recommended: min. 500 ms pick-up time (based on relay manufacturer's recommendation)


recommendation).
The peak time and voltage reduction can be configured in our dedicated function block in WEcontrol Designer.

Dimensions & Mounting

Hardware map

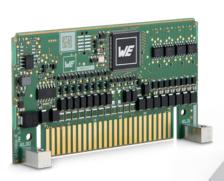

33	DI_KL15_IGN	Wake up	1 x
9	DI_00		
11	DI_01		
13	DI_02		
15	DI_03		
17	DI_04		
19	DI_05		
21	DI_06	Digital input	
23	DI_07	0 – Vsupply	16 x
10	DI_08	On: 6.5 V	10 x
12	DI_09	Off: 2.5 V	
14	DI_10		
16	DI_11		
18	DI_12		
20	DI_13		
22	DI_14		
24	DI_15		

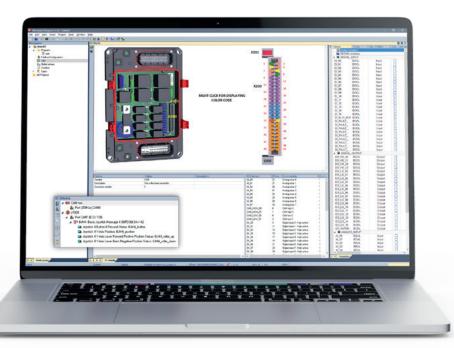
1	CAN High 0	CAN bus 0	
3	CAN Low 0	CAN DUS O	2 v
8	CAN High 1	CAN bus 1	2 X
6	CAN Low 1	CAN DUS 1	

Power supply	AI_VLOAD (32 V)	X201
9 – 32 V	GND	X202

1 x	Temperature sensor	-30 °C to 105 °C
-----	--------------------	------------------

Digital output	DO_HS_00	7	
4 x	High side 2 A	DO_HS_01	5
4 ^	PWM up to 500 Hz With current sense	DO_HS_02	2
		DO_HS_03	4


DO_LSD_15


50

	5 V Vref 400 mA	Vref_5V	
1 x		AI_5V ref	34
		DO_5V_ref_activation	

Analogue inputs								
Connector pin number	ICS-104558	ICS-104559	ICS-104560	ICS-104561	ICS-104562	ICS-104563		WEcontrol Designer I/O
25	5 V	5 V	32 V	10 V	5 V	10 V	CH1	AI_00 / Analog input 0
27	5 V	5 V	32 V	10 V	5 V	10 V	CH2	AI_01 / Analog input 1
29	5 V	5 V	32 V	10 V	32 V	10 V	CH3	AI_02 / Analog input 2
31	5 V	5 V	32 V	10 V	32 V	10 V	CH4	AI_03 / Analog input 3
26	5 V	32 V	32 V	10 V	32 V	32 V	CH5	AI_04 / Analog input 4
28	5 V	32 V	32 V	10 V	32 V	32 V	CH6	AI_05 / Analog input 5
30	5 V	32 V	32 V	10 V	32 V	32 V	CH7	AI_06 / Analog input 6
23	5 V	32 V	32 V	10 V	32 V	32 V	CH8	AI_07 / Analog input 0
34	5 V-REF	5 V-REF	NA	NA	5 V-REF	NA	NA	DO_5VREF_ACT (and AI_5V-REF)

Programming

CDM-A16 is supported by the WEcontrol Designer programming environment and by the complementary WE Flasher Tool. The set of powerful text and graphical editors for IEC-61131-3 languages supports the following programming types:

- Sequential Flow Chart (SFC)
- Function Block Diagram (FBD)
- Ladder Diagram (LD)
- Structured Text (ST)

The WEcontrol Designer also offers a wide range of features such as:

- Optimised application creation
- Simulation and online data access / modification via CAN bus
- Automated language conversion
- User Defined Function Blocks (UDFB) for specific / repetitive functions
- Graphical I/O mapping and configuration
- Automated HTML project documentation
- Import of CAN communication database from Vector and Peak systems
- Easy creation of graphical debug interfaces (based on the application)

We will also be happy to create your application, based on your requirements.

Order information						
ICS-104558	CDM-A16 (1) 8x5V_5Vref					
ICS-104559	CDM-A16 (2) 4x5V_4x32V_5Vref					
ICS-104560	CDM-A16 (3) 8x32V_no5Vref					
ICS-104561	CDM-A16 (4) 8x10V_no5Vref					
ICS-104562	CDM-A16 (5) 2x5V_6x32V_5Vref					
ICS-104563	CDM-A16 (6) 4x10V_4x32V_no5Vref					

This item is a standard product, please consider the relevant datasheet notes. The user is responsible for the product's functionality in its purposed system environment. Technical content may be modified and changed by Würth Elektronik ICS GmbH & Co. KG without any notice.

For more information write us an e-mail ics@we-online.com, call +49 7940 9810-0 or visit us at www.we-online.com/ics

Würth Elektronik ICS GmbH & Co. KG Intelligent Power & Control Systems

Gewerbepark Waldzimmern · Würthstraße 1 74676 Niedernhall · Germany Tel.: +49 7940 9810-0 · Fax +49 7940 9810-1099 ics@we-online.com · www.we-online.com/ics