

THE SYMPHONY OF OSCILLATORS: HARMONIZING SIGNALS FOR SUCCESS

Susanna Engel Rodrigues Field Application Engineer - Frequency Products

WURTH ELEKTRONIK MORE THAN YOU EXPECT

AGENDA

- Introduction
- Types of Noises
 - Oscillator
 - Power Line
 - Output Line
- PCB Layout Recommendations

Introduction

- What is EMI and EMC?
 - Electromagnetic interference and electromagnetic compatibility
- In respect of oscillators?
 - Oscillators can both be effected by EMI but also generate EMI
- In general
 - Appropriate measures must be taken

Type of Noises

Noise From Oscillator

NOISE FROM OSCILLATOR

Choice of Specification Parameters

- Type of Oscillator
- Size
- Output Signal
- Rise & Fall Time
- Frequency
- Supply Voltage

- OCXO: good; VCXO & TCXO: not so good; XO: good compromise
- \rightarrow smaller is better
- CMOS: worse; Sinewave: good but sensitive;
 Differential: good if designed properly
- → take it slow
- \rightarrow lower is better
- → smaller is better

NOISE FROM OSCILLATOR

Spread Spectrum Oscillators

• Spectrum measurement of an CFSS-2 @ 50 MHz

Decoupling Capacitor

Minimum recommendation

Decoupling Capacitor

Decoupling Capacitor

Filtering

- Low pass filter
- Theoretically 20 dB/decade attenuation per filter component
- Ideally filter up to ~10th harmonic
- Various filter topologies
 - CL Filter
 - Π Filter

CL - Filter

- Recommended to add at least as mounting option
 Adds theoretically 40 dB/decade $f_r = \frac{1}{2\pi\sqrt{L*C}}$ V₅
 U₅
 C₂
 C₁
 Out Oscillator
 I GND
 I GND<
- f_r = resonance frequency of the filter should be 1/10 of oscillator frequency

 Π - Filter

Theoretically adds 60 dB/decade

Noise From Output Line

Serial Resistance

- In line between oscillator & μC
- Recommended to be added as mounting option / equipped with 0 Ω
- Eliminate undesired waveform distortions $V_{\rm S}$
- Test for ideal value

RC - Filter

- Recommended to be added as mounting option
- ~20 dB attenuation
- Cutoff frequency higher than oscillator frequency

$$f_C = \frac{1}{(2\pi R_S C_F)}$$

• Optional: Use LC Filter

Termination / Impedance Matching

- Between oscillator & GND
- Mainly important when having long traces
- May add as a mounting option

Termination + RC - Filter

 Attention: R_s & R_T build a voltage divider → R_s << R_T !!

Shielding

- Effect of oscillator housing
 - Plastic enclosures do not have any effect on shielding
 - Metal lids without connection to ground will only have a minor effect
 - Metal lids with connection to ground still only have a small effect
- May enclose the oscillator circuit (+µC) in
 - Metallic enclosures
 - Shielding cans

PCB LAYOUT

General Notes

- Keep the traces as short as possible!
- Avoid 90° bends round right angles!
- Do not cross any other signal lines!
- Do not run any signals and lines under oscillator or close by!
- No loops!
- Keep differential output traces the same or close to the same length and close to each other!

PCB LAYOUT

Oscillator Specific Notes

