

Measurement Techniques

EVERYTHING TEST

Design Verification & Evaluation

Instrument Selection & Optimization

FROM A TWO-MAN LAB TO A PRIVATELY OWNED GLOBAL COMPANY

- Founded 90 years ago by university friends Dr. Lothar Rohde and Dr. Hermann Schwarz as "Physikalischtechnisches Entwicklungslabor" ("Physical and Engineering Development Lab")
- ► Still fully owned by the founding families
- Financial independence, as well as long-term, sustainable planning and acting, ensure stability and resilience.
- Since its founding, an enabler and innovator of a safer and connected world

FACTS & FIGURES

ONE COMPANY, THREE DIVISIONS, DIVERSE MARKETS: WE ARE A RELIABLE TECHNOLOGY PARTNER

TEST & MEASUREMENT

Wireless I Industry, Components & Research I Aerospace & Defense Testing I Automotive

TECHNOLOGY SYSTEMS

Secure Communications I Critical Infrastructure & Networks I Government I IP Network Analytics I Broadcast, Amplifiers & Media

Endpoint Security I Secure Networks I Certified & High-Grade Crypto Solutions

PRODUCTION SITES

EMI Debug and Pre-Compliance

Make ideas real

NC ESSENTIAL

EMI Agenda

- EMC Standards Overview
- Traditional EMI Test
 - Compliance test with a spectrum analyzer
- EMI Debug and Troubleshooting
 - Troubleshooting with a spectrum analyzer
 - Troubleshooting with a oscilloscope
- Measurement solution comparison

First pass compliance test: Devices can have a 90% failure rate!

Pass Fail

Source: EEtimes.com, "IoT Devices: Most initially Fail EMI testing"

EMI Considerations for Your Design

Causes of EMI

EMI is often caused by switching of signals:

- Power Supply
- Clocks
- ► DDR memory interface
- ► etc.

Know your EUT

- Specify known frequency source (clock and etc.)
- Generate a list of possible harmonic frequencies
- Determine the frequency of switching powers supplies
- Identify miscellaneous periodic waves

These are referred to as narrowband interference and generally occurs at very specific frequencies related to components on your board.

EMI Testing Comparing Equipment

	Real-Time Oscilloscope
	2018-96-06 18/27.14 50/ ps 2 (58// 50 (ps 2) (58// 50
	Chi Wimi Chi Chi Chi Chi Chi Chi Chi Chi Chi Ch
-92.96	Matha Case: 10 db/dw
20 alls Correct Results 1 Corr	orumi

Debug or Pre-Compliance

Pre-Compliance or Compliance

ROHDE&SCHWARZ

Application Example: Optimizing Wide Band-Gap Switching

Fast gate driver signal

Shaped gate driver signal

Significantly reduced emissions

EMC Standards and background

ESSENTIA,

What is EMC?

Standards

International Electrotechnical Commission (IEC)

Comité International Spécial des Perturbations Radio (CISPR)

CISPR 11, ISM

CISPR 14-1, Appliances

CISPR 15, Lighting

ROHDE&SCHWARZ

∜\$

EMI Testing Traditional Approach

System Configuration

♦€

Conducted emissions test (AC Mains)

Radiated Emissions Test

♦€

PC Software for better automation, reporting

EMI Measurement Application

EMI Scan with a Spectrum Analyzer

- Full compliance means full chamber, CISPR 16 compliant receiver
- Want results that will match these
- Start with the limit lines for the standard you are testing against
- Finding a quiet area is more and more challenging
- Consider use of a full compliance chamber

Compliance EMC Testing: Measuring Equipment Transducers

Antenna - electric radiated emission

ISN - Conducted voltage

Antenna - magnetic radiated emission

Current probe - conducted current

Absorbing clamp – disturbance power

Artificial Network – Conducted voltage

EMC Standards vs EMI Measurements

Typical EMC Measurement

- Mostly far field in nature
- ► More accurate with less ambience noise
- More expensive to setup

Spectrum Analyzer

CSSENTIA/

EMI Measurement with Scope or Spectrum Analyzer

- ► Near field measurements
- ► More noise and less accurate
- ► Cheap and flexible

EMI Testing Debugging and troubleshooting

Basic EMI Debug Process

Near Field Probing

- Check for EMI issues periodically to make sure no obvious issues
- Can use a Spectrum Analyzer or Scope with 50 Ohm Input
- Scopes with 1 mV/div settings do not need preamplifier

Choosing an approach

Spectrum Analyzer or Oscilloscope for EMI debugging

Laptop Power Supply

Troubleshoot with a Spectrum Analyzer

- DUT is a switching power supply
- Looking for "offending" signals that would fail a standards based limit line

► Step 1:

Hunt for the offending signals – use markers to find the highest power levels in the spectrogram (lower display)

Laptop Power Supply

Constanting and	Ref Level -20.00 d	Bm	RBW 3 MHz						SGL
spectrum 😽	Att 0	dB 🖷 SWT 5 ms	VBW 3 MHz						
1 Zero Span								O 1Pk	Clrw 🔍 2Pk Max
									D2[1] -1.39 dB
									1.60500 ms
-30 dBm									M1[1]56.06 dBm
									1.37500 ms
-40 dBm									
50 JB									
-50 dBm		М1							
		Ţ			DZ				
-60 dBm									
					l l				
-70 dBm									
				1 I I					
the unit which the	chatal to nother alternation	he deal and a second	enternet in the March	nu an alatha	ն հեռում ունենքի	h i she the a	h h i shi sh	Martheau RM	and the section is a
Lott & Building J	an kalinin Abda Abana ka	u Murskaallan Mur	AN. ALLANDA ALANA	A MARINA A CAMARINA A R	uddan an ddarfar Adha	Muser which is the second	14 Martin Andrew Martin	Man word with	Malatakan Brass Mary
								l'	
-90 dBm									
-100 dBm									
110 dBm									
-110 ubm									
				1001					F00.0
Cr 12.4 MIR2 1001 pts 2000, pts 2000									
							💎 Rea	ady 🦛	99 % 00:24:18

Troubleshoot with a Spectrum Analyzer

► Step 2:

Use Zero Span at the same frequency the offending signal occurs

- 19.4 MHz in this case

 Zero span shows the RF envelope power

 Use markers to measure the time between pulses (clock signal) – 1.6 msec in this case

Laptop Power Supply

Troubleshoot with a Spectrum Analyzer

 Step 3: Spectrum display

Set Sweep time to >1000x the measured time interval (1.6 msec)

- 1000x ensures enough points in the spectrum trace display to see the "pulse"
- (Or use a real time spectrum analyzer)
- This is the worst case signal: actual quasi-peak detector might show a lower level
- Work to address this offending emission

Quasi Peak

ANGESSENTIALS

- Quasi-peak means 'not quite peak', or 'aiming towards peak but not actually peak'
- Quasi-peak detector was believed to better indicate the subjective annoyance level experienced by a listener hearing impulsive interference to an AM radio station

Spectrum analyzers and EMI receivers both have a quasi-peak detector

Important Scope-Parameters for EMI Debugging

Important Scope-Parameters for EMI Debugging

	-		
Bandwidth	100 MHz to 4 GHz	Analog capture range of the EMI signals	
Sample rate	> 2X Analog BW	Max FFT Frequency is half the sample rate	
Coupling	50 Ohm Near Field Probes are designed for 50 Ohm systems		
Vertical sensitivity	1 – 5 mV/div Check HW settings, larger requires a pre-amplifier		
FFT Span / RBW	Span to Resolution bandwidth factor (100 – 1000)		
FFT gating	Easily isolate spurious spectral components in time domain		
FFT Zone Trigger	Draw a mask or area on an FFT to trigger the oscilloscope		

Frequency and Time Domain Correlation

Near-Field Probe with an Oscilloscope

Modern Scope FFT Capabilities Mask Test / Zone Trigger

FFT Gate specific moments in time

FFT Gating isolates the spectrum of a time event

Conclusion

EMI Receiver, Spectrum Analyzer and Oscilloscope

Feature	EMI Receiver	EMI Receiver Spectrum Analyzer
General purpose RF		
Wireless standards WLAN, IOT, Cellular		
Serial data bus decode		
EMI detectors / bandwidths (incl. QP)		
EMI Meas. Dynamic Range & Sensitivity		
Log-scale & limit lines		
Scan Types		
Time/frequency correlation possible		
Gapless recording		
Auto ranging		

EMI Receiver, Spectrum Analyzer and Oscilloscope

Feature	EMI Receiver	Spectrum Analyzer	Oscilloscope
General purpose RF	-	✓	\checkmark
Wireless standards WLAN, IOT, Cellular	-	\checkmark	\checkmark
Serial data bus decode	-	-	\checkmark
EMI detectors / bandwidths (incl. QP)	\checkmark	\checkmark	-
EMI Meas. Dynamic Range & Sensitivity	Very high / Very high	High / Very high	Medium
Log-scale & limit lines	\checkmark	\checkmark	(✔)
Scan Types	All (Sweep, step, time-domain, zero-span)	Some (Sweep, zero-span)	No scan
Time/frequency correlation possible	\checkmark	\checkmark	✓
Gapless recording	Very long	Long	Medium
Auto ranging	√	-	-

Summary

- 1. EMI is complex but can be tested easily
- 2. Test EMI early in the design process
- 3. Oscilloscopes and Spectrum Analyzers can be used for EMI

R&S has full product portfolio from probes to chambers with technical experts to help! First pass compliance test: Low cost IOT device 90% failure rate

Source: EEtimes.com, "IoT Devices: Most initially Fail EMI testing"

Measurement Techniques

EVERYTHING TEST

Design Verification & Evaluation

Instrument Selection & Optimization

Presentation Feedback

