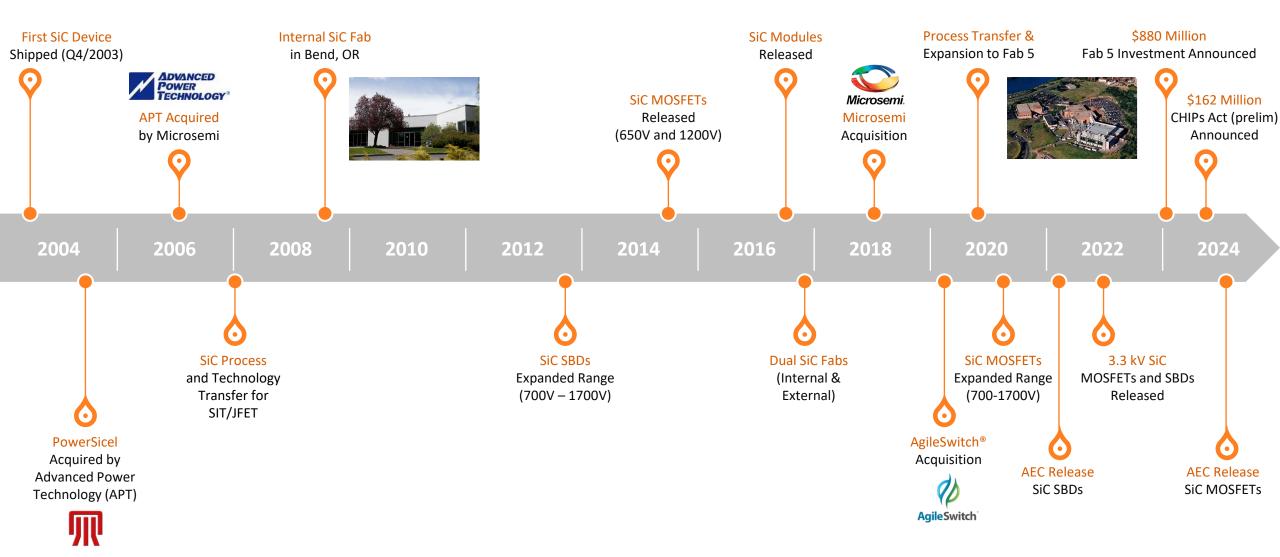
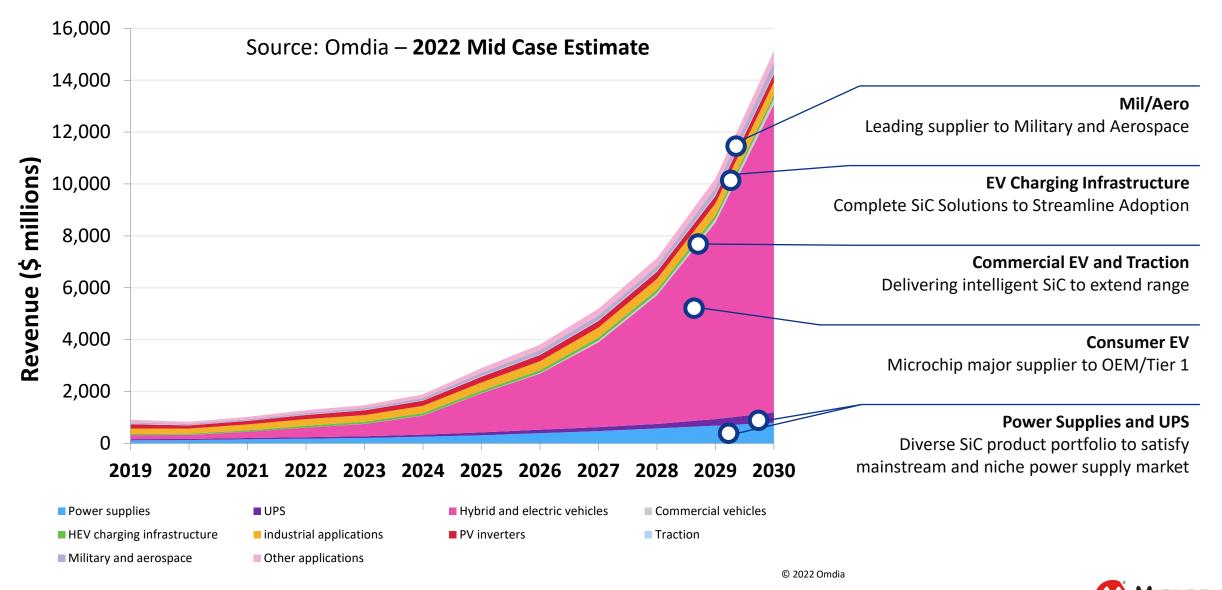
## **mSiC<sup>™</sup> Products and Solutions:** Adopt SiC with Ease, Speed and Confidence

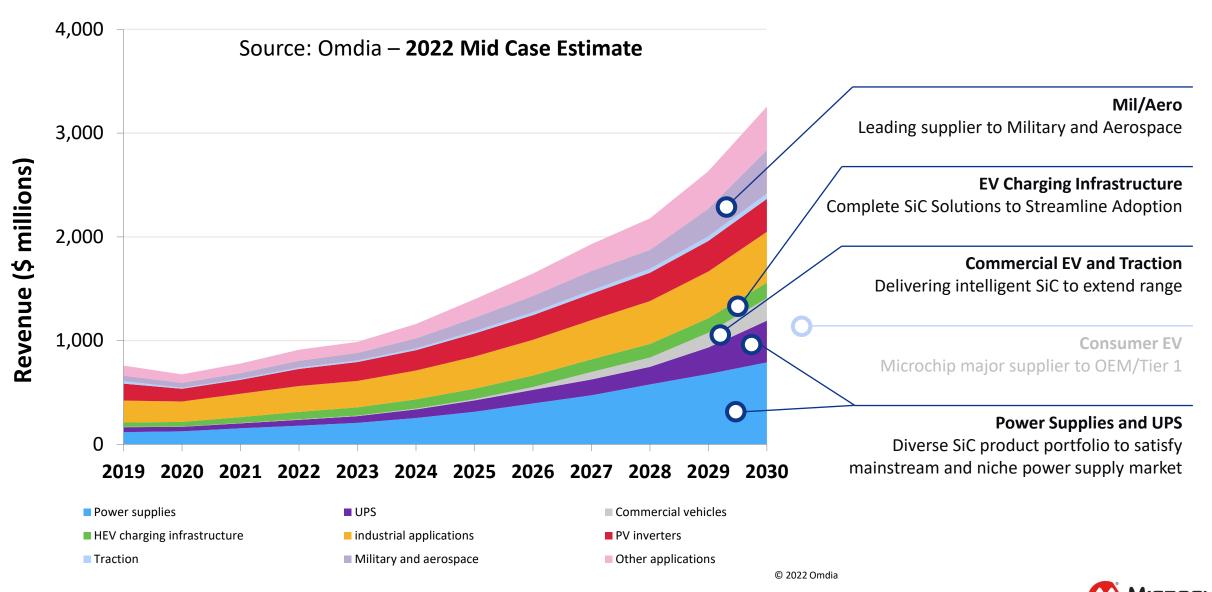



A Leading Provider of Smart, Connected and Secure Embedded Control Solutions




Silicon Carbide BU October 22, 2024

# **Microchip SiC Started in 2003**






# **Microchip in the SiC Power Market**



# Microchip in the SiC Power Market (non-EV)



# mSiC<sup>™</sup> Product Portfolio | 700V, 1200V, 1700V, 3.3 kV

| Products     | Packages | Portfolio                                                                                                                                                                                                        |
|--------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bare Die     |          | <ul> <li>700V – 3.3 kV, 15 – 750 mΩ SiC MOSFETs</li> <li>700V – 3.3 kV, 10 – 90A SiC Schottky Barrier Diodes (SBDs)</li> </ul>                                                                                   |
| Discretes    |          | <ul> <li>700V – 3.3 kV, 15 – 750 mΩ SiC MOSFETs</li> <li>700V – 3.3 kV, 10 – 100A SiC Schottky Barrier Diodes</li> </ul>                                                                                         |
| Modules      |          | <ul> <li>700V – 1700V, 1.5 – 40 mΩ SiC MOSFETs</li> <li>700V – 1700V, 50 – 600A SiC Schottky Barrier Diodes</li> <li>650V – 1200V, 25 – 100A Hybrid (Si IGBT + SiC SBD)</li> <li>Custom Power Modules</li> </ul> |
| Gate Drivers |          | <ul> <li>1200V – 3.3 kV Plug-and-Play Gate Drivers</li> <li>Augmented Switching<sup>™</sup> Technology</li> <li>Isolated 5A Gate Driver</li> </ul>                                                               |

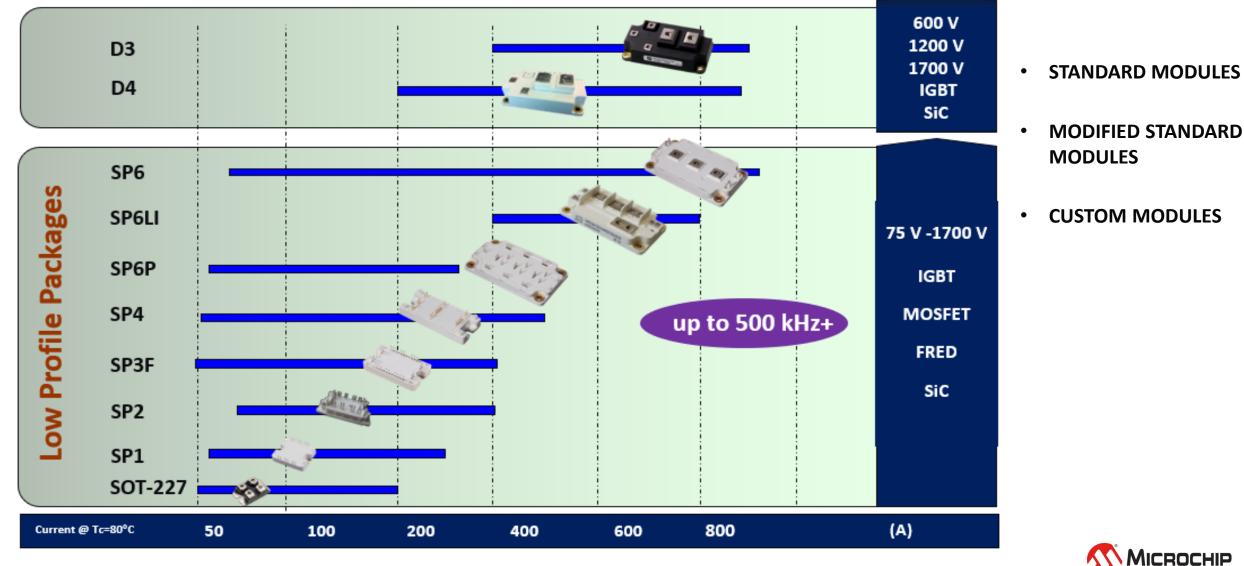


## Microchip SiC Portal www.microchip.com/SiC

## Includes

- SiC Bare Die
- SiC Discretes
- SiC Modules
- SiC Gate Drivers
- Featured Videos
- SiC Design Resources
  - Reference Designs and Application Notes
  - Models and Simulation Tools
  - Product Selection Tools
- Support Options

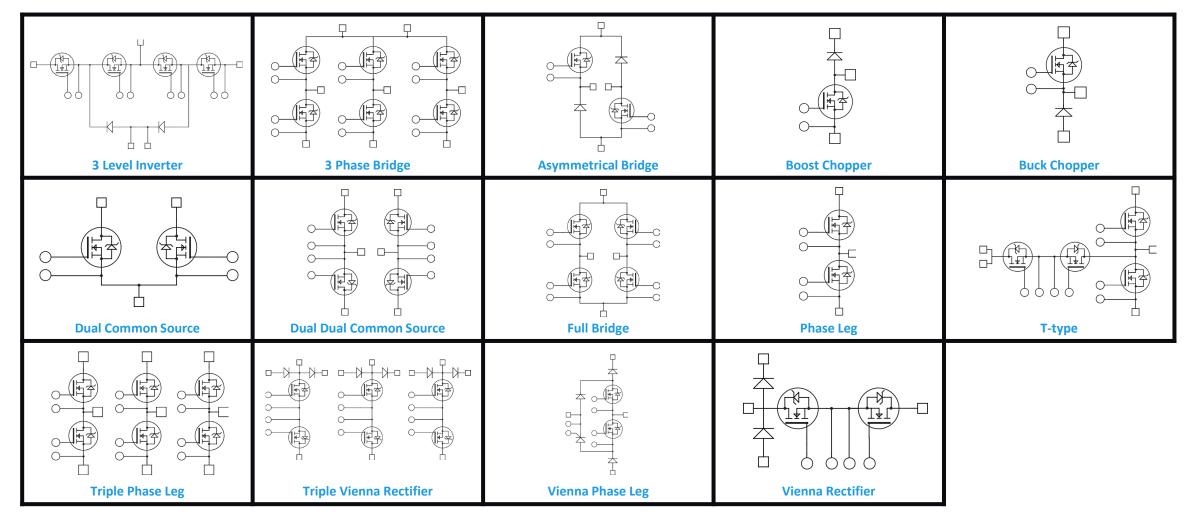



| mSiC™ Products                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Broadest Portfolio of Silicon Carbide                                                                          | (SiC) Products and Solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                    |
|                                                                                                                | gn, manufacturing and support of SiC devices and power solu<br>m cost, fastest time to market and lowest risk. Our solutions in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                    |
| xplore Our Products                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                    |
|                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = = 🔳 🌉 🏉                                                                                                                                                          |
| Discrete SiC MOSFETs                                                                                           | Discrete SiC Diodes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bare Die SiC MOSFETs and Schottky<br>Diodes                                                                                                                        |
| Our SiC MOSFETs feature best-in-class avalanche<br>ruggedness, short circuit capability and oxide<br>illetime. | Our SiC Schottky Barrier Diodes (SBDs) offer the<br>widest range of solutions in the market.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SiC bare die MOSFETs and SBDs are excellent<br>options for advanced power circuits and provide<br>significantly higher power density and efficiency.               |
| Explore SIC MOSFETs                                                                                            | Explore SIC Diodes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Explore SIC Bare Die                                                                                                                                               |
| and and and                                                                                                    | <ul> <li>Mark 1</li> <li>Mark 1</li></ul> | THE REAL PROPERTY OF                                                                                                                                               |
| SiC MOSFET and Diode Modules                                                                                   | Digital Gate Drivers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Design Resources                                                                                                                                                   |
| Our SiC power modules are available in low-profile,<br>low-stray inductance and baseless packaging.            | Our SiC gate drivers incorporate patented<br>Augmented Switching <sup>34</sup> technology and robust<br>short-circuit protection. These digital gate drivers<br>are fully software configurable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | We offer a variety of time-saving reference designs,<br>evaluation kits, models, simulation tools and<br>application notes to accelerate your SiC-based<br>design. |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Explore SIC Design Resources                                                                                                                                       |
|                                                                                                                | Explore SiC Gate Drivers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Explore SiC Reference Designs                                                                                                                                      |



# mSiC<sup>™</sup> Products | Power Module Product Lines

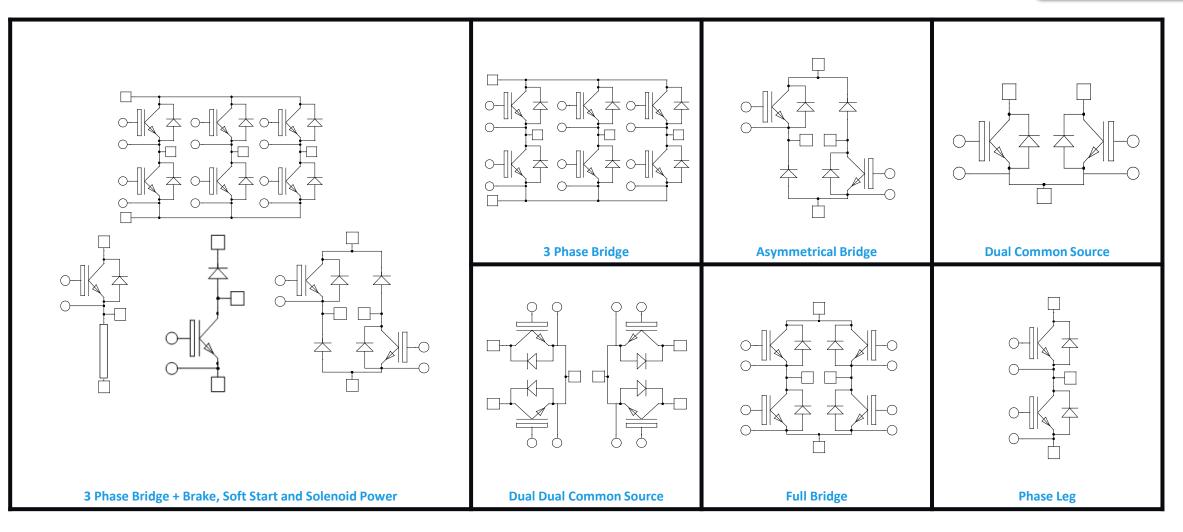
**Back to Content** 


Product range from 5 kW to 500+ kW



# mSiC<sup>™</sup> Modules (MOSFET) | 700V – 1700V

## **Broad range of configurations**


mSiC<sup>™</sup> Modules Products Page





# mSiC<sup>™</sup> Modules (Hybrid) | 650V – 1200V Broad range of configurations

mSiC<sup>™</sup> Modules Products Page





# Flexibility with mSiC<sup>™</sup> Module Architectures Standard, modified and custom modules

### **Power Semiconductor Die** IGBT, MOSFET, Diode, SiC Soldered to the substrates • Connected by ultrasonic Al wire bonds Substrates - $AI_2O_3$ , AIN, $Si_3N_4$ Provide isolation • Good heat transfer to the base plate **Base Plate -**Improve the heat transfer to the heatsink Cu material for good thermal transfer AlSiC for improved reliability

#### Package

#### **Standard or Custom**

- Environmental protection
- Mechanical robustness

### Internal Printed Circuit Board

Not available in all modules

- Used to route gate signals tracks to small signal terminals
- Used to mount gate circuit and protection in case of intelligent power module

### Terminals

#### Screw on or Solder pins

- Power and signal connections
- Minimum parasitic resistance and inductance

### **High Design Flexibility**

### Empowering balance with price, performance and reliability



© 2024 Microchip Technology Inc. and its subsidiaries

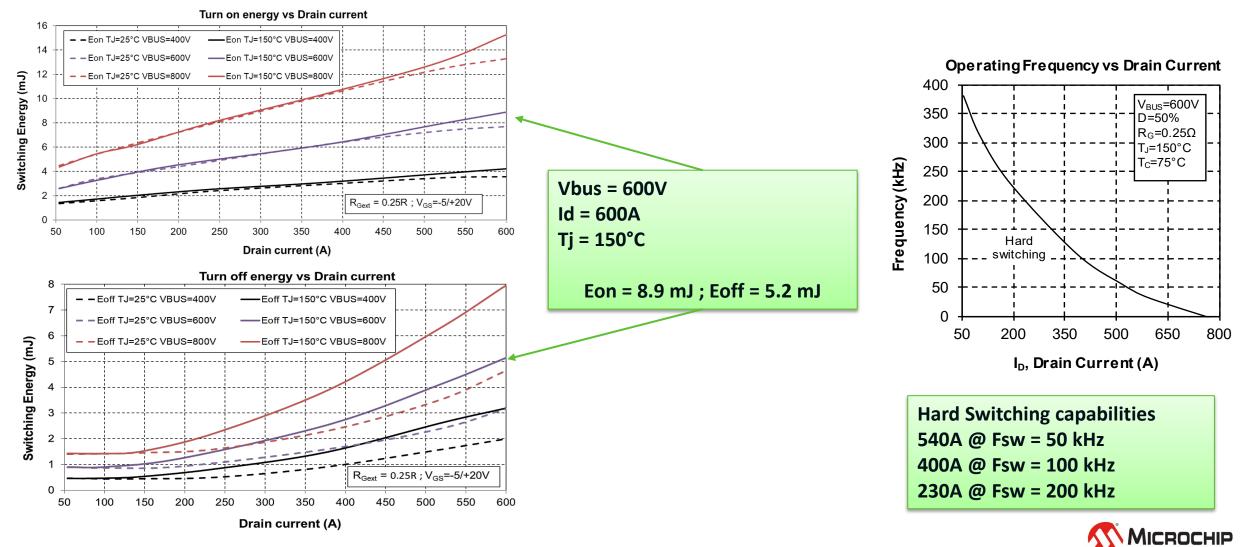
## mSiC<sup>™</sup> Modules | Lowest Inductance SP6LI Power Module – Enabling Higher Power Density and Efficiency

- Extremely low stray inductance, < 2.9 nH</li>
- Dedicated to SiC MOSFET technology
- High switching frequency
- High efficiency
- High current

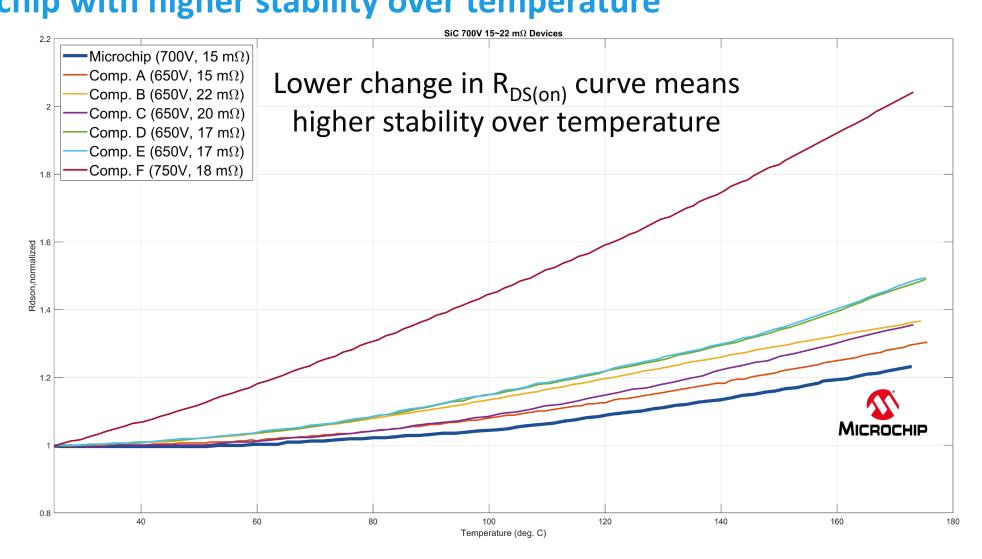




# Low Inductance SP6LI Package vs Discretes

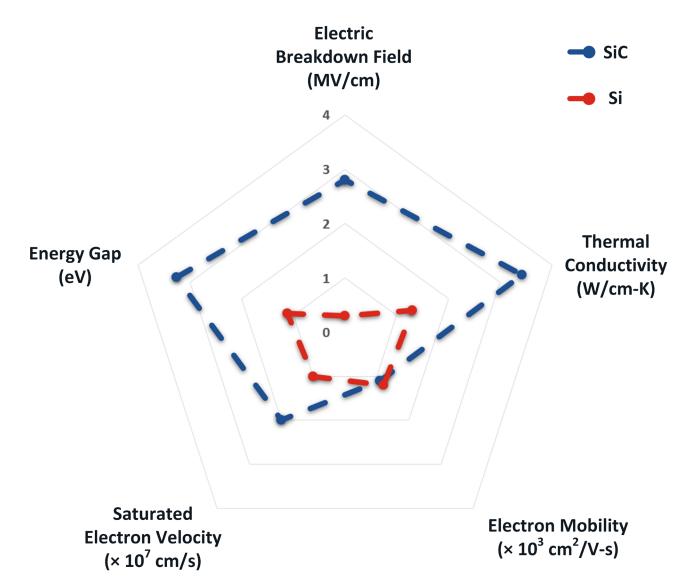



|                           | SP6LI power module                      | TO-247 discrete package                                | Power module benefits      |     |  |
|---------------------------|-----------------------------------------|--------------------------------------------------------|----------------------------|-----|--|
| MOSFET Electrical ratings | 1200 V - 754 A @ Tc=80°C per switch     | 1200 V - 73 A @ Tc=100°C (non isolated) each           | Higher power density       | ~~~ |  |
| Size                      | 62 mm x 108 mm / 2.44" x 4.25"          | 36 x (15.87 mm x 21.13 mm / 0.625" x 0.832")           | Easier mounting            | ~   |  |
| Mounting pcb area         | 6'696 mm2 / 10.37 sq. in.               | Min. 13'950 mm2 / 21.62 sq. in. (mounting dependant)   | Smaller system size        | ~~  |  |
| Weight                    | 320 g w/ Cu baseplate - 220 g w/ AlSiC  | 36 x 6.2 g = 223.2 g (no isolation)                    | More compact design        | × . |  |
| Stray inductance          | 3 nH                                    | 20 nH                                                  | Higher efficiency          | ~~~ |  |
| Isolation                 | 4 kV AC, 1mn - per design               | None, to be added during assemlby                      | Higher reliability         | ~~~ |  |
| Thermal Management        | Very good and repeatable                | Complicated                                            | Better thermal performance | ~~~ |  |
| Temperature sensor        | Yes, NTC                                | No, to be added externally                             | More accurate protection   | ~~~ |  |
| Assembly time             | 4 mounting holes + 14 electrical screws | 36 mounting holes + 108 solder pins (additional labor) | Faster assembly time       | ~~~ |  |



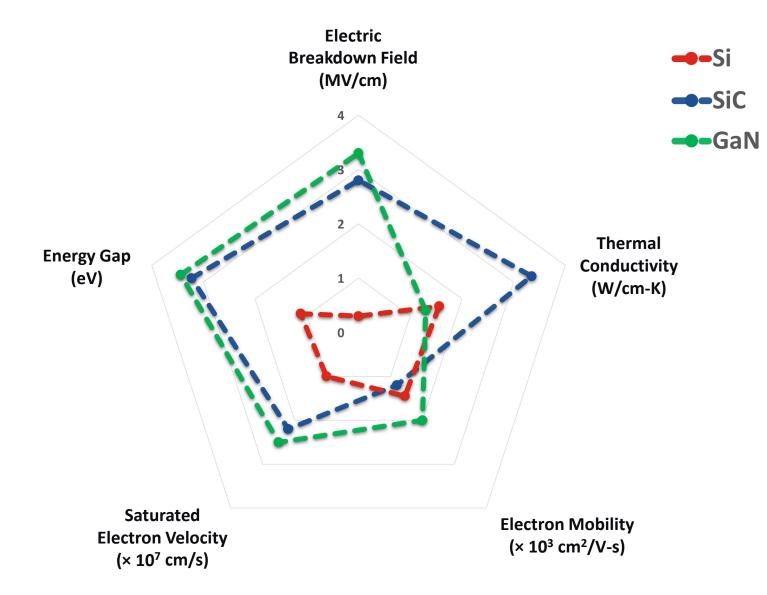

## **SP6LI = High current @ high switching frequency**

MSCMC120AM02CT6LINMG – 1200V/2 m $\Omega$  full SiC Phase Leg with AlSiC base plate and Si<sub>3</sub>N<sub>4</sub> substrates



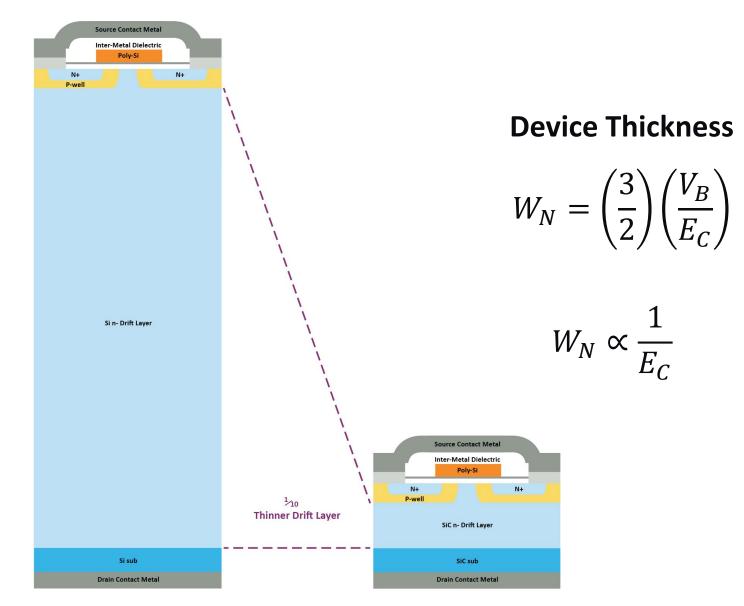

## **Ruggedness** | $R_{DS(on)}$ vs. Junction Temperature Microchip with higher stability over temperature






# **Si vs SiC Material Properties**

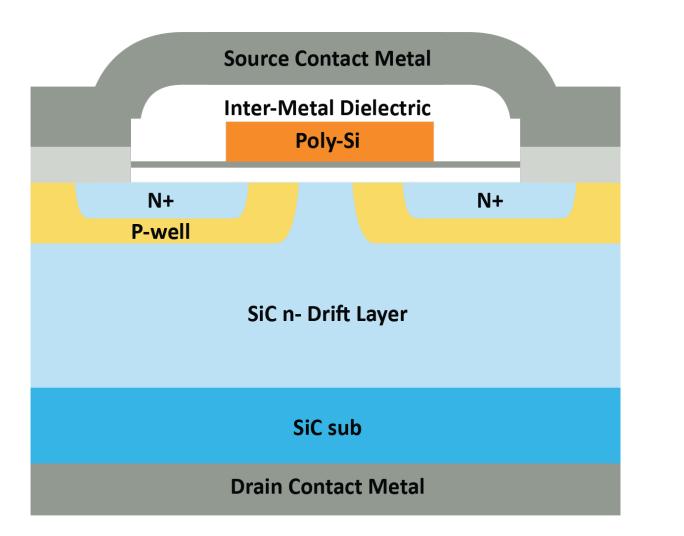





# Si vs GaN vs SiC Material Properties






# **Drift Layer Thickness Comparison**





© 2024 Microchip Technology Inc. and its subsidiaries

# SiC MOSFET Planar (Gate) Drift Resistance

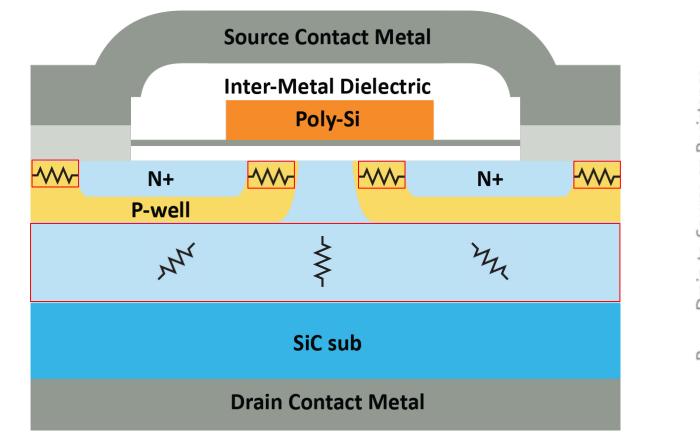


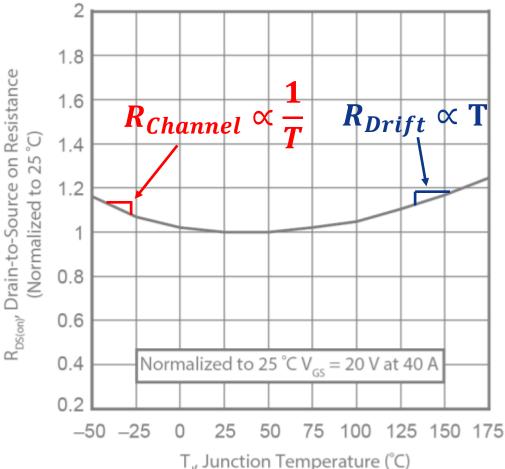

**Drift Layer Resistance** 

$$R_{ON,SP} = \left(\frac{3}{2}\right)^3 \frac{V_B^2}{\mu_N \,\varepsilon_S \, E_C^3}$$

 $R_{ON,SP} \propto \frac{1}{E_c^3}$ 

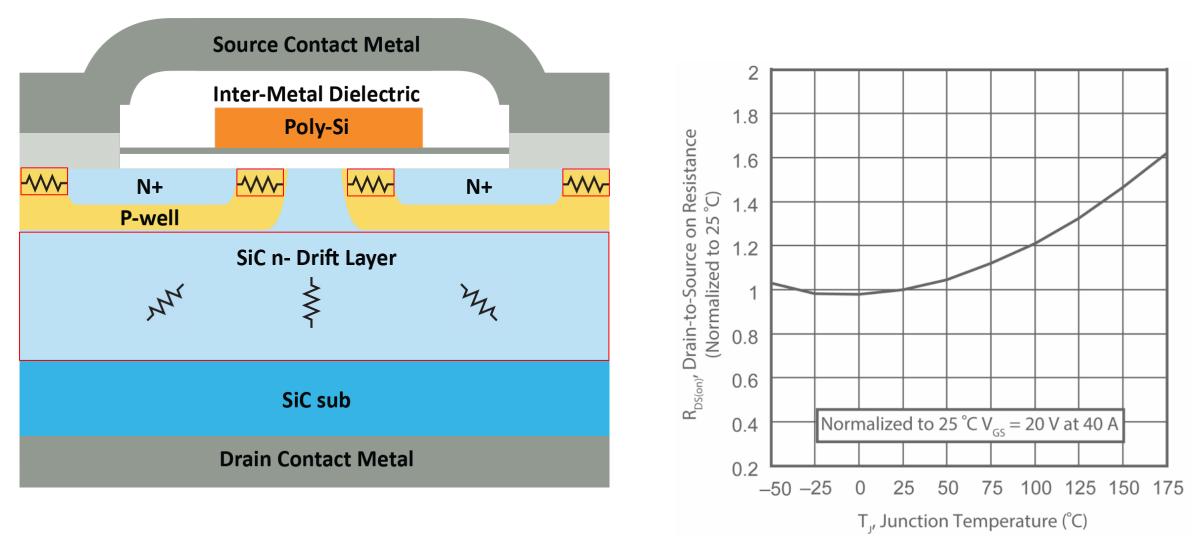



# **SiC MOSFET Resistance**



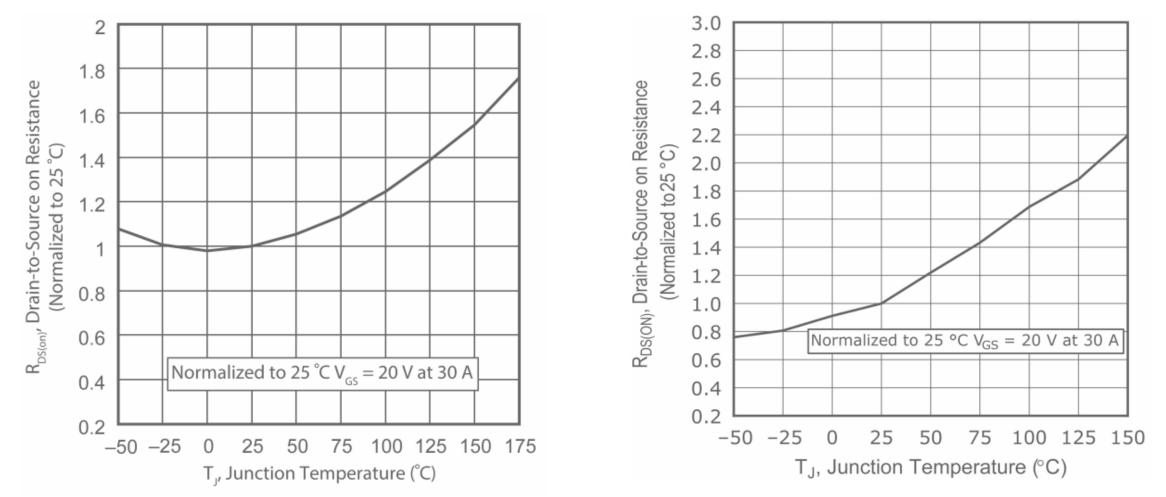



© 2024 Microchip Technology Inc. and its subsidiaries


# 700V SiC MOSFET R<sub>DS(on)</sub> vs. Temperature







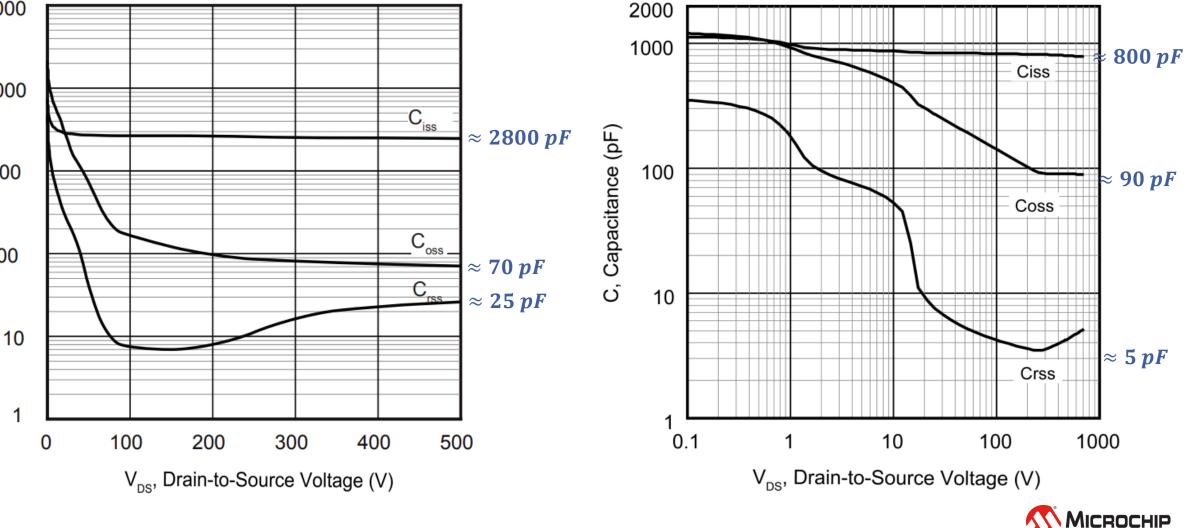

# **1200V SiC MOSFET R**<sub>DS(on)</sub> vs. Temperature





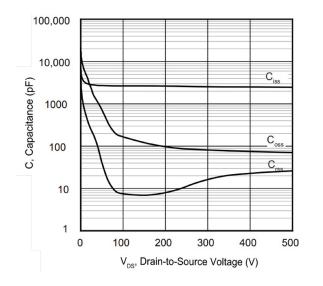
# 1700V/3.3 kV SiC MOSFET R<sub>DS(on)</sub> vs. Temperature





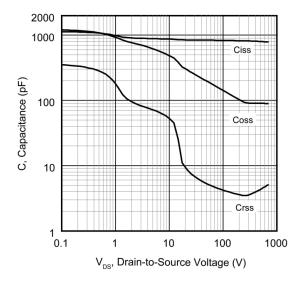

**Back to Content** 

# Si vs SiC Device Capacitance Comparison

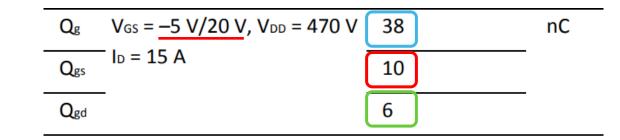

### Si SJ Power MOSFET (99 m $\Omega$ , 600V) 100,000 2000 1000 10,000 C C, Capacitance (pF) $\approx$ 2800 *pF* C, Capacitance (pF) 1000 100 C 100 $\approx$ 70 *pF* C 10 $\approx 25 \, pF$ 10

## SiC Power MOSFET (90 m $\Omega$ , 700V)



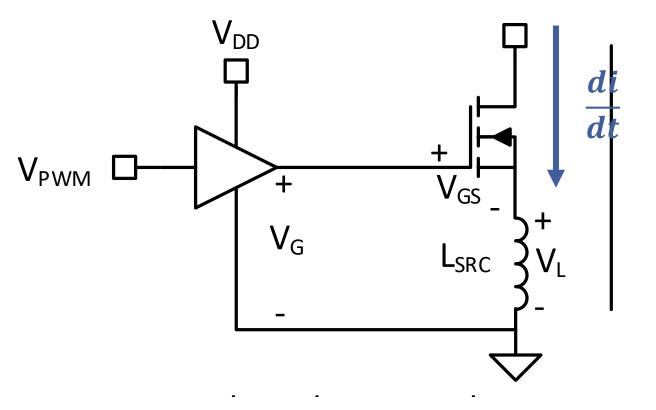

# Si vs SiC Device Charge Comparison

## Si SJ Power MOSFET (99 mΩ, 600V)




 $\boldsymbol{Q} = \int \boldsymbol{C} \, \boldsymbol{d} \boldsymbol{v}$ 

## SiC Power MOSFET (90 mΩ, 700V)




| Symbol       | Values |      |  | Unit | Note / |                         |
|--------------|--------|------|--|------|--------|-------------------------|
|              | Min.   | Тур. |  | Max. |        | Test Condition          |
| $Q_{as}$     | -      | 14   |  | -    | nC     | V <sub>DD</sub> =480 V, |
| $Q_{\sf gd}$ | -      | 61   |  | -    |        | $I_{\rm D}$ =18.1 A,    |
| $Q_{g}$      | -      | 119  |  | -    |        | $V_{\rm GS}$ =0 to 10 V |

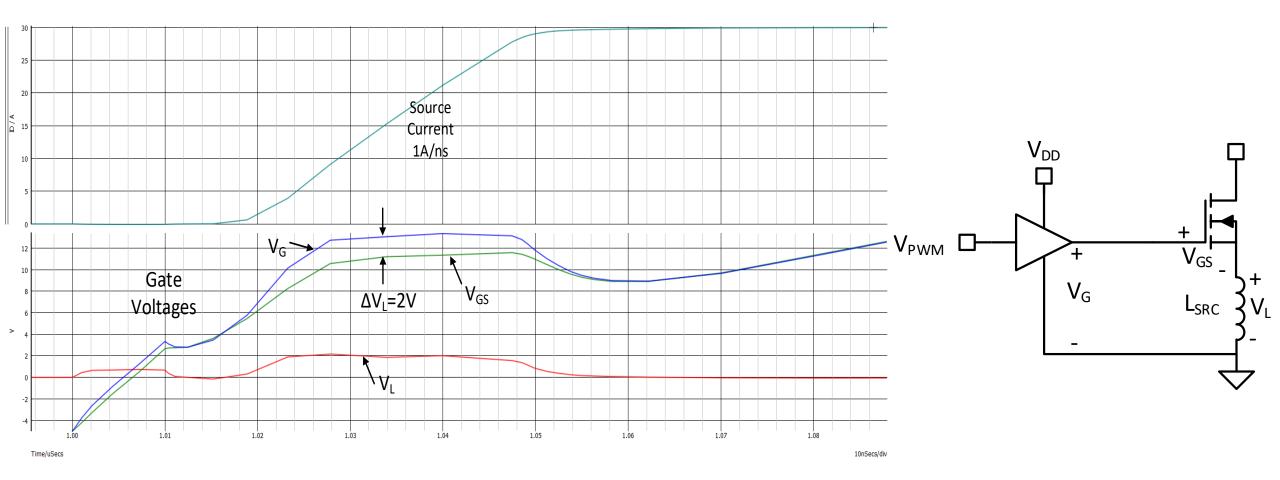




# **Effect of Source Inductance**



$$V_{GS} = V_G - V_L$$
$$V_L = L_{SRC} \frac{di}{dt}$$

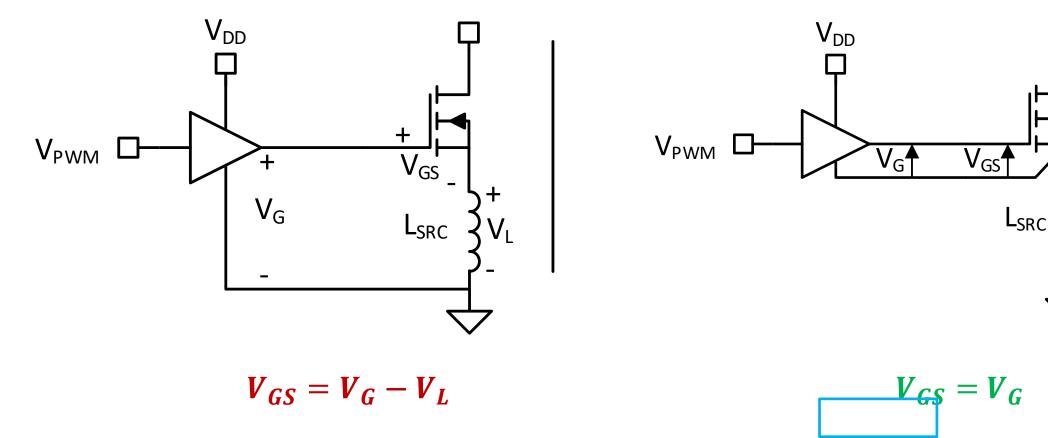

$$L_{SRC} = L_{Bond\_Wire} + L_{Lead}$$

Example:  
Given 
$$L_{SRC} = 2 nH$$
 and  $\frac{di}{dt} = 1 \frac{A}{ns}$   
 $V_L = L_{SRC} \frac{di}{dt} = 2V$ 



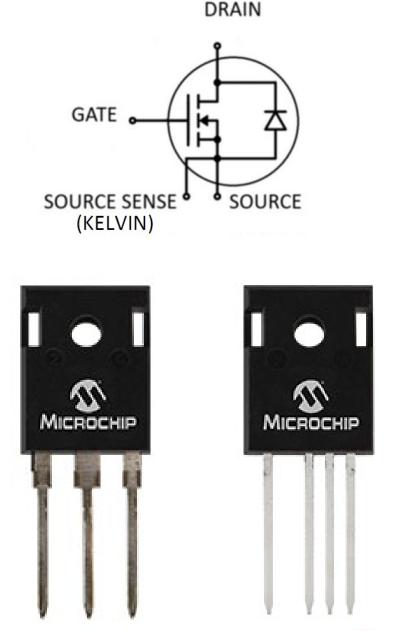
# **Effect of Source Inductance (SPICE Simulation)**

• Simulation shows the effect of source inductance on the gate-to-source voltage





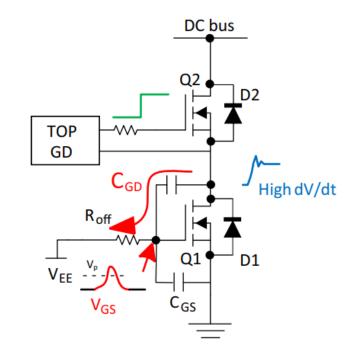

**Back to Content** 


# **Device Packages with Kelvin Source**

- In a 4-lead package, Kelvin source sense pin is wire bonded directly to the die
  - Isolates the gate drive return from the inductive effects of the MOSFET source pin and bond wire
  - Faster turn-on and turn-off
  - Greatest improvement is with turn-on



# TO-247 3L vs 4L Package


- Advantages of 4-Lead package
  - Faster Turn-on and Turn-off Time
    - Lower Power Dissipation
  - Longer Creepage distance between Drain and Source
    - Higher Voltage Operation / Agency Requirements
  - Improved PCB layout for both Power and Gate Drive traces
- Disadvantage of 4 Lead Package
  - Faster Turn-on and Turn-off
    - Higher Bus Voltage Overshoot, Ringing and EMI

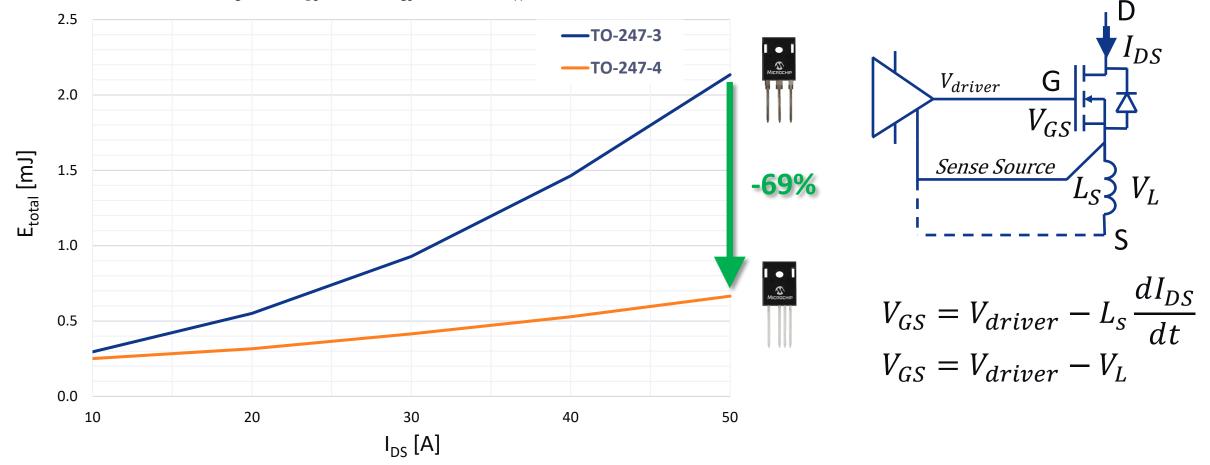




# **Gate Drive Voltages**

- $V_{GS_{oN}}$  typically 18V or 20V, some devices in the market at 15V
- $V_{GS_{oFF}}$  typically negative e.g. -3V or -5V, some devices in the market at "0V"
- V<sub>TH</sub> or V<sub>P</sub> threshold voltage, negative temperature coefficient

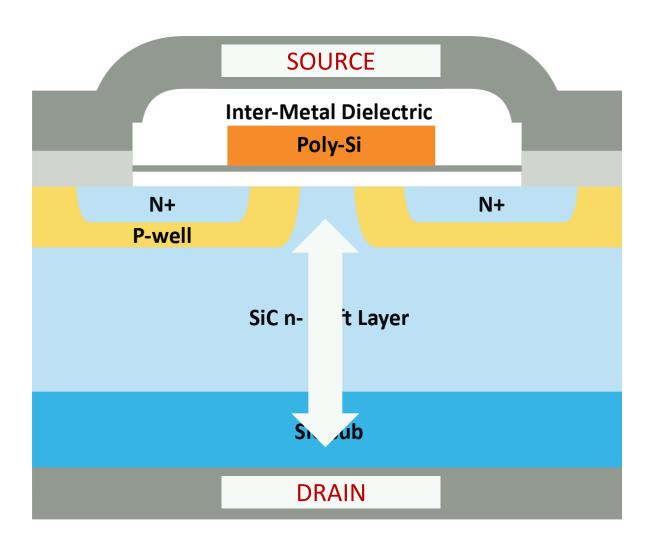



|                                                                                                                                                                  | Driving M                                | licrochip                                                                                                                               | SiC N                                                                                                                                                                                                                                                                 | AOSFETs                                         |                                       |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------|--|
| Author: Xuning Zhang, Dennis Meyer and Kevin<br>Speer<br>Microchip Technology Inc.                                                                               |                                          |                                                                                                                                         | V <sub>GSon</sub> and V <sub>GSon</sub> , but as with any design, the additiona<br>losses associated with sub-optimal drive conditions<br>should be analyzed and understood. To this end, the<br>reasoning behind optimal V <sub>GSon</sub> and V <sub>GSon</sub> are |                                                 |                                       |  |
| PURPOSE                                                                                                                                                          |                                          |                                                                                                                                         |                                                                                                                                                                                                                                                                       | and the expected trad<br>in the following secti | e-offs for each case are<br>ons.      |  |
| This application note provides design guidance for<br>properly selecting gate-source voltages for Microchip's<br>SIC MOSFET products, along with related device  |                                          |                                                                                                                                         | ON STATE GATE DRIVE VOLTAGE, V <sub>GSon</sub>                                                                                                                                                                                                                        |                                                 |                                       |  |
| performance and behavio<br>This note applies to Mic                                                                                                              |                                          | rs of the                                                                                                                               | Driving Microchip SiC MOSFETs with a lower V <sub>GSol</sub><br>will exhibit:                                                                                                                                                                                         |                                                 |                                       |  |
| type MSCXXXSMAXXX.                                                                                                                                               |                                          |                                                                                                                                         | · Increased on-state resistance, resulting in higher                                                                                                                                                                                                                  |                                                 |                                       |  |
| SPECIFYING GAT                                                                                                                                                   |                                          |                                                                                                                                         | <ul> <li>conduction loss</li> <li>Reduced peak (saturation) current capability</li> </ul>                                                                                                                                                                             |                                                 |                                       |  |
| VOLTAGES FOR S                                                                                                                                                   | IC MOSFETS                               |                                                                                                                                         | Longer short circuit withstand time                                                                                                                                                                                                                                   |                                                 |                                       |  |
| The way gate drive voltages are specified on data<br>sheets varies by manufacturer, but most will have some<br>form of Table 1. We begin by defining some terms: |                                          |                                                                                                                                         | <ul> <li>Extended gate oxide lifetime</li> <li>Increased switching loss under the same gate resistance.</li> </ul>                                                                                                                                                    |                                                 |                                       |  |
| V <sub>GS</sub> is the applied<br>MOSFET's gate and so                                                                                                           |                                          | n the                                                                                                                                   | On Stat                                                                                                                                                                                                                                                               | e Resistance, R                                 | Son                                   |  |
| V <sub>GSon</sub> is the steady-sta<br>MOSFET on.                                                                                                                |                                          | um the                                                                                                                                  | The four curves in Figure 1 show how the normalized<br>R <sub>DSon</sub> (normalized to R <sub>DSon</sub> at 25°C and 20V gate<br>voltage) increases with junction temperature, T. Data<br>is shown for Microchip's largest SIC MOSFET die at                         |                                                 |                                       |  |
| <ul> <li>V<sub>GSoff</sub> is the steady-sta<br/>MOSFET off.</li> </ul>                                                                                          | te V <sub>GS</sub> applied to tu         | um the                                                                                                                                  |                                                                                                                                                                                                                                                                       |                                                 |                                       |  |
| <ul> <li>V<sub>GSmax</sub> is the manufactor<br/>steady-state V<sub>GS</sub>, show</li> </ul>                                                                    |                                          |                                                                                                                                         | each of four voltage classes: 700V, 15 mΩ; 1200V, 17<br>mΩ; 1700V, 35 mΩ; and 3300V, 25 mΩ.<br>Some general observations include:                                                                                                                                     |                                                 |                                       |  |
| positive extremes.                                                                                                                                               |                                          |                                                                                                                                         |                                                                                                                                                                                                                                                                       |                                                 |                                       |  |
| V <sub>GS,OP</sub> is the manu<br>steady state values for                                                                                                        | VGSon and VGSoff-                        |                                                                                                                                         | <ul> <li>The increase of R<sub>DSon</sub> for SiC MOSFETs with<br/>temperature is much lower than that of silicon<br/>MOSFETs.</li> </ul>                                                                                                                             |                                                 |                                       |  |
| Some data sheets do no<br>similar to silicon MOSFET<br>call for different optimal va                                                                             | d V <sub>GSoff</sub> :<br>ions may       | <ul> <li>Microchip SiC MOSFETs show a lower increase<br/>of R<sub>DSon</sub> at elevated T<sub>j</sub> than other SiC MOSFET</li> </ul> |                                                                                                                                                                                                                                                                       |                                                 |                                       |  |
| MICROCHIP RECO                                                                                                                                                   | MMENDATIO                                | NS                                                                                                                                      | At Vos                                                                                                                                                                                                                                                                |                                                 | s a minor shift which                 |  |
| For optimal device perfor<br>Microchip SiC MOSFE <sup>1</sup><br>V <sub>GSon</sub> = +20V and V <sub>G</sub><br>MOSFETs still perform we<br>TABLE 1: GATE S      | Ts are best drive<br>soff = -5V. Microch | n using<br>hip SiC<br>values of                                                                                                         | ets eve<br>• At V <sub>GS</sub><br>substan                                                                                                                                                                                                                            | en smaller at higher 1                          | j.<br>se of R <sub>DSon</sub> is more |  |
| Characteristics                                                                                                                                                  | Symbol                                   | Conditio                                                                                                                                |                                                                                                                                                                                                                                                                       | Value                                           | Unit                                  |  |
|                                                                                                                                                                  | V <sub>GSmax</sub>                       | Absolute maximum<br>DC values                                                                                                           |                                                                                                                                                                                                                                                                       | -10 to 23                                       | V                                     |  |
| Gate-Source Voltage                                                                                                                                              |                                          | Recommended DC<br>operating values                                                                                                      |                                                                                                                                                                                                                                                                       |                                                 |                                       |  |

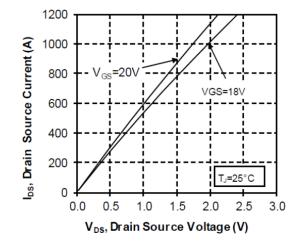
Driving mSiC<sup>™</sup> MOSFETs (microchip.com)

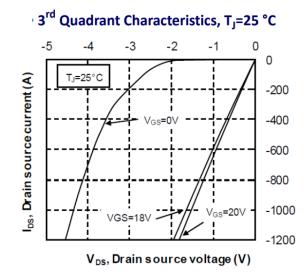


## mSiC<sup>™</sup> Products | Lower Switching Losses Source sense pin for faster turn on and lower switching losses


**1200V, 80 mΩ mSiC<sup>™</sup> MOSFET** R<sub>c</sub> = 5Ω, V<sub>DS</sub> = 750V, V<sub>GS</sub> = -5V/20V, T<sub>A</sub> = 25°C

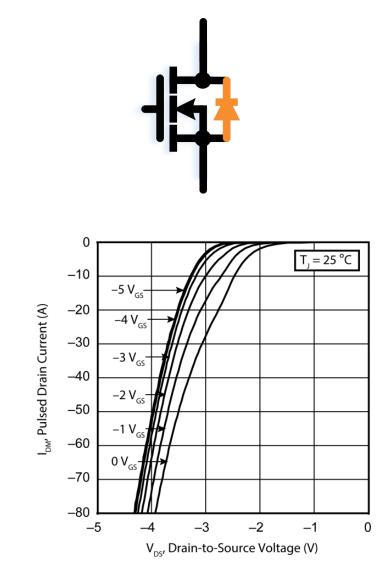


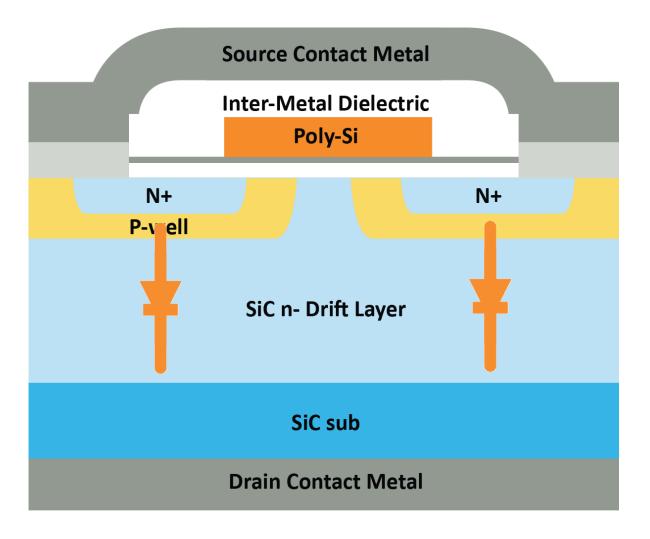




#### Back to Content

# Channel Conduction: 1<sup>st</sup> & 3<sup>rd</sup> Quad. Operation




Output Characteristics, T<sub>1</sub> = 25 °C



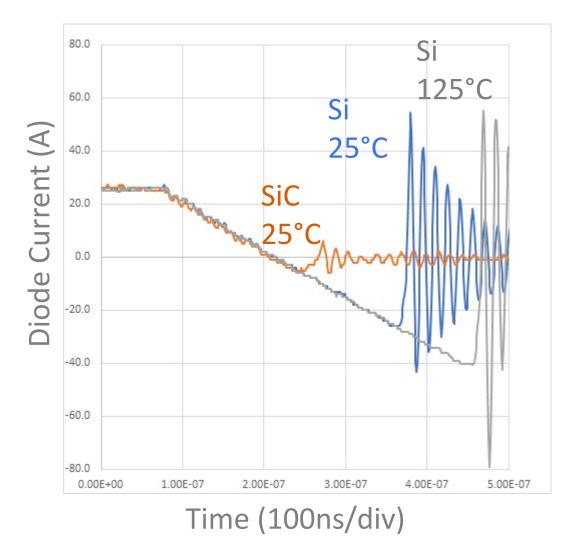





# SiC MOSFET Body Diode



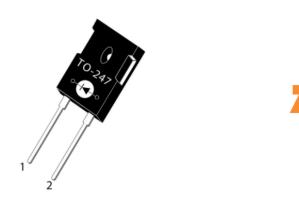


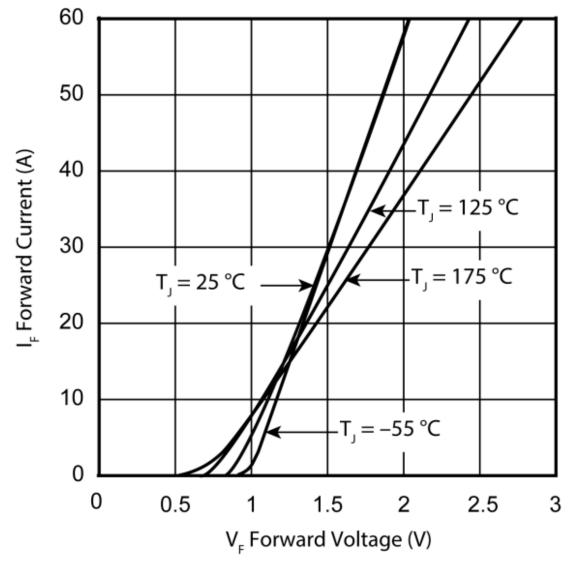



# Si vs. SiC Body Diode Reverse Recovery

- Switching is 25A forward, 200 A/uS rate
- SiC device shows no significant temperature dependence at 200 A/uS.
  - At 1500-2000 A/uS there will be about a 20% increase over 25C.

### 400V bus voltage, 100 kHz switching frequency

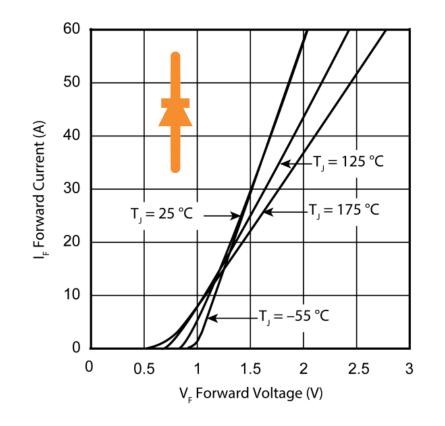

|            | I <sub>RR,PK</sub><br>(А) | t <sub>rr</sub><br>(ns) | Q <sub>rr</sub><br>(nC) | E <sub>rr</sub><br>(μJ) | P <sub>rr</sub><br>(W) |
|------------|---------------------------|-------------------------|-------------------------|-------------------------|------------------------|
| Si (25°C)  | 23                        | 175                     | 2188                    | 875                     | 87.5                   |
| Si (125°C) | 40                        | 270                     | 5400                    | 2160                    | 216                    |
| SiC (25°C) | 4                         | 60                      | 120                     | 48                      | 4.8                    |





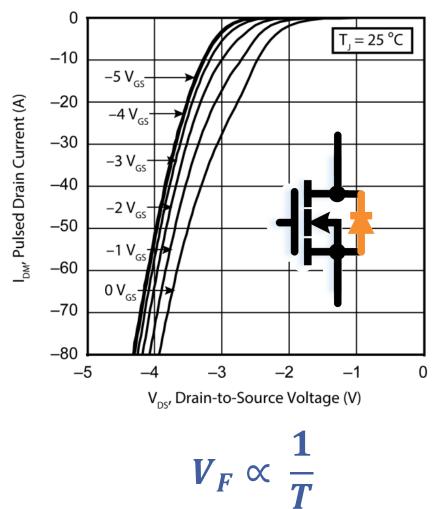

# SiC Schottky Barrier Diode (SBD)

- Low forward voltage
- Low leakage current
- No reverse recovery





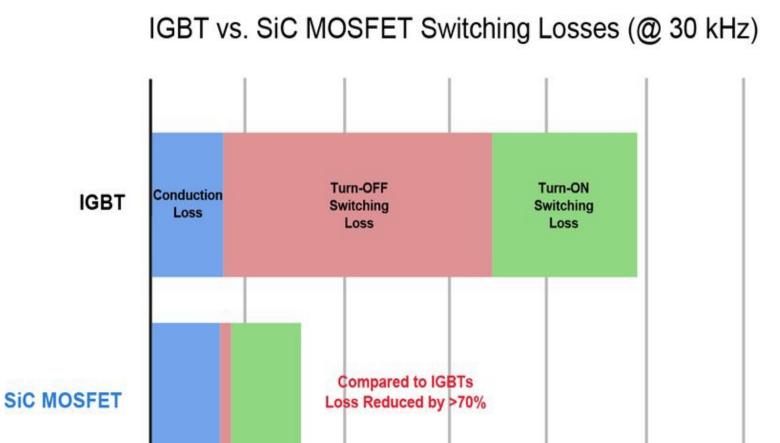




# SiC SBD and SiC Body Diode Comparison

### Sic SBD



 $V_F \propto T$ 


### **SiC Body Diode**



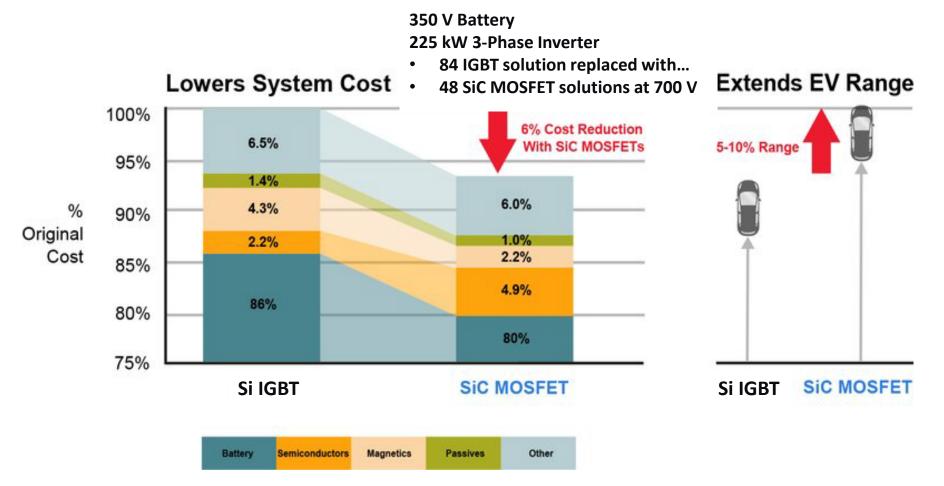


# SiC Benefits Compared To Si IGBT

0



20 40 60 80 100


Loss (W)



120

# SiC Increases Efficiency, Lowers System Cost

### Key Takeaway: SiC offers better performance and overall lower system cost



© 2024 Microchip Technology Inc. and its subsidiaries

# mSiC<sup>™</sup> Bare Die | 700V – 3.3 kV

### Adopt SiC with Ease, Speed and Confidence

mSiC<sup>™</sup> Bare Die Products Page

| Voltage | V <sub>GS</sub> | R <sub>DS(on)</sub> | Waffle Pack       |
|---------|-----------------|---------------------|-------------------|
|         |                 | 25 mΩ               | MSC025SMA330D/S   |
| 3.3 kV  | 201/ 191/       | 27 mΩ               | MSC027SMA330D/S   |
| 3.3 KV  | 20V-18V         | 80 mΩ               | MSC080SMA330D/S   |
|         | ·               | 400 mΩ              | MSC400SMA330D/S   |
| 1700V   | 20V-18V         | 35 mΩ               | MSC035SMA170D/S   |
| 17000   | 200-180         | 750 mΩ              | MSC750SMA170D/S   |
|         |                 | 17 mΩ               | B MSC017SMA120D/S |
|         |                 | 25 mΩ               | B MSC025SMA120D/S |
| 1200V   | 20V-18V         | 40 mΩ               | SC040SMA120D/S    |
| 12000   | 200-180         | 80 mΩ               | B MSC080SMA120D/S |
|         |                 | 180 mΩ              | SC180SMA120D/S    |
|         |                 | 360 mΩ              | SC360SMA120D/S    |
|         |                 | 15 mΩ               | SC015SMA070D/S    |
| 7001/   | 201/ 191/       | 35 mΩ               | SC035SMA070D/S    |
| 700V    | 20V-18V         | 60 mΩ               | SC060SMA070D/S    |
|         |                 | 90 mΩ               | B MSC090SMA070D/S |

#### mSiC MOSFETs

| Voltage | Current | Waffle Pack       |
|---------|---------|-------------------|
| 3.3 kV  | 90A     | MSC090SDA330D/S   |
| 5.5 KV  | 30A     | MSC030SDA330D/S   |
|         | 50A     | MSC050SDA170D/S   |
| 1700V   | 30A     | MSC030SDA170D/S   |
|         | 10A     | MSC010SDA170D/S   |
|         | 50A     | SC050SDA120D/S    |
|         | 30A     | SC030SDA120D/S    |
| 1200V   | 20A     | SC020SDA120D/S    |
|         | 15A     | MSC015SDA120D/S   |
|         | 10A     | SC010SDA120D/S    |
|         | 50A     | MSC050SDA070D/S   |
| 700V    | 30A     | SC030SDA070D/S    |
|         | 10A     | B MSC010SDA070D/S |

**mSiC Diodes** 



# mSiC<sup>™</sup> MOSFETs | 700V – 3.3 kV

### **Adopt SiC with Ease, Speed and Confidence**

**mSiC<sup>™</sup> MOSFETs Products Page** 

|         |                 |                     | метосни                | MICROCHIP      | Summer<br>Summer              |               | Michael        |                    |               |
|---------|-----------------|---------------------|------------------------|----------------|-------------------------------|---------------|----------------|--------------------|---------------|
| Voltage | V <sub>GS</sub> | R <sub>DS(on)</sub> | D2PAK (TO-263-7)       | D3PAK (TO-268) | PSMT (TOLT)                   | TO-247-3      | T0-247-4L      | TO-247 -4L Notched | SOT-227       |
|         |                 | 25 mΩ               |                        |                |                               |               |                |                    |               |
| 3.3 kV  | 20V-18V         | 80 mΩ               |                        |                |                               |               | MSC080SMA330B4 |                    |               |
|         |                 | 400 mΩ              |                        |                |                               |               | MSC400SMA330B4 |                    |               |
| 1700V*  | 20V-18V         | 35 mΩ               |                        |                |                               | MSC035SMA170B | MSC035SMA170B4 |                    |               |
| 17000   | 200-180         | 750 mΩ              | MSC750SMA170SA         | MSC750SMA170S  |                               | MSC750SMA170B | MSC750SMA170B4 |                    |               |
|         |                 | 17 mΩ               |                        | MSC017SMA120S  |                               | MSC017SMA120B | MSC017SMA120B4 | MSC017SMA120B4N    | MSC017SMA120J |
|         |                 | 25 mΩ               |                        | MSC025SMA120S  |                               | MSC025SMA120B | MSC025SMA120B4 | MSC025SMA120B4N    | MSC025SMA120J |
| 1200V   | 20V-18V         | 40 mΩ               |                        | MSC040SMA120S  |                               | MSC040SMA120B | MSC040SMA120B4 | MSC040SMA120B4N    | MSC040SMA120J |
| 12000   | 200-100         | 80 mΩ               | SC080SMA120SD          | MSC080SMA120S  | MSC080SMA120SC                | MSC080SMA120B | MSC080SMA120B4 |                    | MSC080SMA120J |
|         |                 | 180 mΩ              | MSC180SMA120SD         | MSC180SMA120S  | MSC180SMA120SC                | MSC180SMA120B |                |                    |               |
|         |                 | 360 mΩ              | MSC360SMA120SD         | MSC360SMA120S  | MSC360SMA120SC                | MSC360SMA120B |                |                    |               |
|         |                 | 15 mΩ               |                        | MSC015SMA070S  |                               | MSC015SMA070B | MSC015SMA070B4 | MSC015SMA070B4N    |               |
| 7001/   | 201/ 101/       | 35 mΩ               |                        | MSC035SMA070S  |                               | MSC035SMA070B | MSC035SMA070B4 | MSC035SMA070B4N    |               |
| 700V    | 20V-18V         | 60 mΩ               | SCO60SMA070SD          | MSC060SMA070S  | MSC060SMA070SC                | MSC060SMA070B | MSC060SMA070B4 |                    |               |
|         |                 | 90 mΩ               | MSC090SMA070SD         | MSC090SMA070S  | MSC090SMA070SC                | MSC090SMA070B |                |                    |               |
| 39      | Auto            | and Comme           | ercial Parts Available |                | and the Tarahara language and |               |                |                    | MICROC        |

Auto and Commercial Parts Available

© 2024 Microchip Technology Inc. and its subsidiaries

# mSiC<sup>™</sup> Diodes | 700V – 3.3 kV

**Adopt SiC with Ease, Speed and Confidence** 

mSiC<sup>™</sup> Diodes **Products Page** 

|         |         | Millioner     | Міскоснір     | Michigan I      | Manager        |                 | CO Dual                                            |
|---------|---------|---------------|---------------|-----------------|----------------|-----------------|----------------------------------------------------|
| Voltage | Current | TO-220        | D3PAK         | TO-247          | TO-247 MAX     | TO-247 Diodes   | SOT-227 Diodes                                     |
| 3.3 kV  | 90A     |               |               |                 | MSC090SDA330B2 |                 |                                                    |
| 5.5 KV  | 30A     |               |               | MSC030SDA330B   |                |                 |                                                    |
|         | 50A     |               |               | MSC050SDA170B   |                |                 |                                                    |
| 1700V   | 30A     |               |               | MSC030SDA170B   |                |                 | MSC2X30SDA170J<br>MSC2X31SDA170J                   |
|         | 10A     |               |               | MSC010SDA170B   |                |                 | MSC2X50SDA170J<br>MSC2X51SDA170J                   |
|         | 100A    |               |               |                 |                |                 | MSC2X100SDA120<br>MSC2X101SDA120<br>MSC2X101SDA120 |
|         | 50A     |               | MSC050SDA120S | SC050SDA120B    |                | MSC050SDA120BCT | MSC2X50SDA120J<br>MSC2X51SDA120J                   |
| 42001   | 30A     | SC030SDA120K  | MSC030SDA120S | SC030SDA120B    |                | MSC030SDA120BCT | MSC2X30SDA120J<br>MSC2X31SDA120J                   |
| 1200V   | 20A     | MSC020SDA120K | MSC020SDA120S | SC020SDA120B    |                |                 |                                                    |
|         | 15A     | SC015SDA120K  |               | SC015SDA120B    |                |                 |                                                    |
|         | 10A     | MSC010SDA120K |               | MSC010SDA120B   |                |                 |                                                    |
|         | 100A    |               |               |                 |                |                 | MSC2X100SDA070J<br>MSC2X101SDA070J                 |
|         | 50A     |               | MSC050SDA070S | A MSC050SDA070B |                | MSC050SDA070BCT | MSC2X50SDA070J<br>MSC2X51SDA070J                   |
| 700V    | 30A     | SC030SDA070K  | MSC030SDA070S | SC030SDA070B    |                | MSC030SDA070BCT | MSC2X30SDA070J<br>MSC2X31SDA070J                   |
|         | 10A     | SC010SDA070K  | MSC010SDA070S | MSC010SDA070B   |                | MSC010SDA070BCT |                                                    |

Auto and Commercial Parts Available

© 2024 Microchip Technology Inc. and its subsidiaries

## mSiC<sup>™</sup> Modules (MOSFET) | 700V – 1700V Adopt SiC with Ease, Speed and Confidence

mSiC<sup>™</sup> Modules Products Page

| Configuration                  | BL1  | BL2  | BL3  | D3        | SOT-227   | SP1F      | SP3F             | SP4  | SP6C       | SP6LI     | SP6P       |
|--------------------------------|------|------|------|-----------|-----------|-----------|------------------|------|------------|-----------|------------|
| Configuration 3 Level Inverter | (mΩ) | (mΩ) | (mΩ) | (mΩ)      | (mΩ)      | (mΩ)      | (mΩ)<br>1.5 – 40 | (mΩ) | (mΩ)       | (mΩ)      | (mΩ)       |
|                                |      |      |      |           |           |           |                  |      | 3.8 - 11.7 |           |            |
| 3 Phase Bridge                 |      |      | 25   |           |           |           | 15 – 25          |      |            |           |            |
| Asymmetrical Bridge            |      | 25   |      |           |           |           |                  |      |            |           |            |
| Boost Chopper                  | 25   |      |      |           | 12.5 – 40 |           | 11               |      |            |           |            |
| Buck Chopper                   | 25   |      |      |           | 12.5 – 40 |           | 11               |      |            |           |            |
| Double Dual Common Source      |      | 25   | 12.5 |           |           |           |                  |      |            |           |            |
| Dual Common Source             | 25   |      | 12.5 |           |           |           | 5 – 17.5         |      | 1.7 – 5.8  |           |            |
| Full Bridge                    |      | 25   | 12.5 |           |           |           | 6.3 – 40         |      | 3.8 - 11.7 |           |            |
| Phase Leg                      | 25   |      |      | 2.5 - 5.8 |           | 12.5 – 40 | 5 - 11.7         |      | 2.7 – 5.8  | 2.1 - 5.8 |            |
| Т-туре                         |      |      |      |           |           | 25 – 35   | 12.5 – 17.5      |      | 4.2 - 8.8  |           |            |
| Triple Phase Leg               |      |      |      |           |           |           | 15 – 35          |      |            |           | 5 - 17.5   |
| Triple Vienna Rectifier        |      |      |      |           |           |           |                  |      |            |           | 7.5 – 12.5 |
| Vienna Phase Leg               |      |      |      |           |           |           | 15               | 7.5  |            |           |            |
| Vienna Rectifier               |      |      |      |           |           | 15 – 25   | 7.5 – 12.5       |      | 3 - 8.3    |           |            |



## dsPIC33 for Digital Power Conversion Performance For More Sophisticated Algorithms

#### Adaptive algorithms

- For improved efficiency over widely varying load conditions
- Implement phase shedding, real-time dead-time adjustment, variable switching frequency, variable bulk voltage, etc.

#### Predictive and non-linear algorithms

• For improved dynamic response to transient conditions

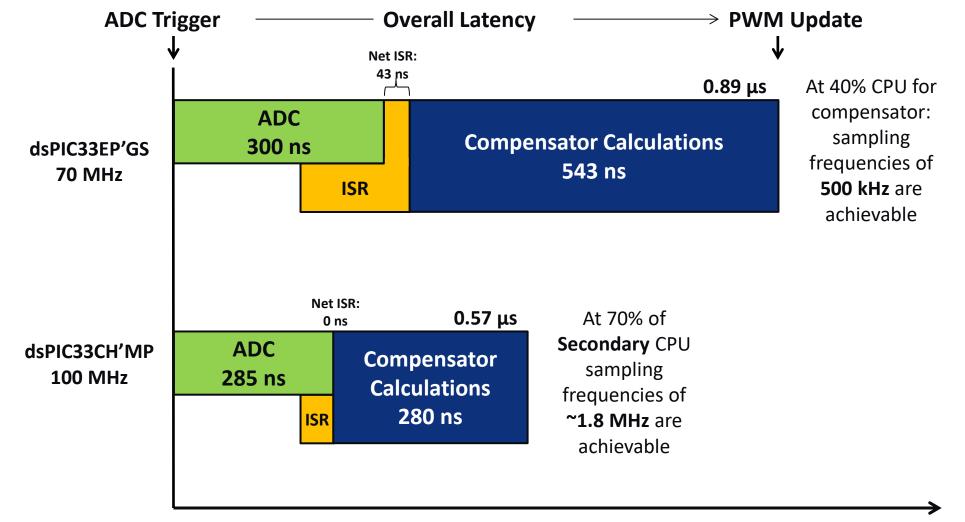
#### • Higher switching frequencies

• Smaller inductors and capacitors - save cost and space, improve power density

#### Performance headroom

- For additional independent control loops or more outputs
- Run-time diagnostics, communications, predictive maintenance




## dsPIC33 C Family Features

- DSC optimized for digital power and motor control applications
  - High-speed 12-bit ADCs (285 ns) and High-resolution PWMs (250 ps)
  - 40-bit accumulators for unprecedented intermediate precision
  - Highly parallel CPU architecture: up to 8 operations per clock (per core)
  - Sustainable 100 MMACS performance (per core)
- Single and Dual core versions
- Up to 1 MB Flash Memory
- Packages as small as 4x4 mm (28 leads)
- Up to 144 lead packages



# dsPIC33CH Performance Example

### **Digital Power 3P3Z Latency**



Latency



### 32-bit dsPIC33A DSCs: Real-Time Control with Precision and Performance

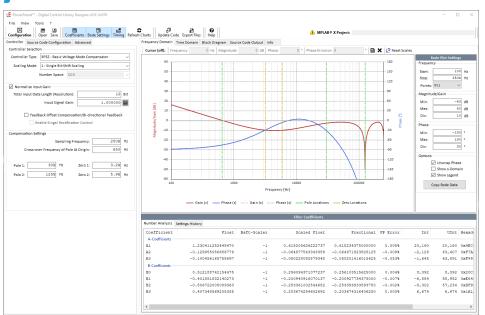
The dsPIC33A features a 32-bit CPU running at 200 MHz, equipped with double precision FPU and DSP capabilities for efficient numerical processing, ideal for real-time control tasks. Its architecture ensures high performance, while a robust development toolset facilitates faster product development.

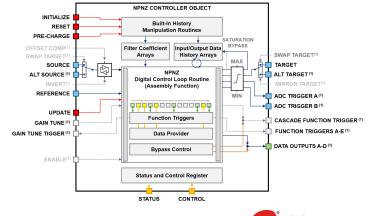
- 32-bit CPU Running at 200 MHz Speed with DSP Engine
- Single and Double Precision Floating-point Unit (FPU)
- Up to 128 Kbytes of Program Flash Memory (ECC)
- Up to 16 Kbytes of RAM Memory (ECC and MBIST)
- Up to 40 MSPS Conversion Rate on 12-bit ADCs
- 100 MHz GBW Opamps and High-Speed Comparators with 5 ns Response Time
- ISO 26262/IEC 61508/IEC 60730 Functional Safety Readiness
- 28-64 pin packages
- Automotive Q100 Qualification



Market / Application:

Motor control, digital power conversion, and advanced sensing for automotive, industrial automation, and sustainability solutions


Product Page Website: Digital Signal Controllers (DSCs) Datasheet: dsPIC33A Family Datasheet




# **PowerSmart™ Development Suite**

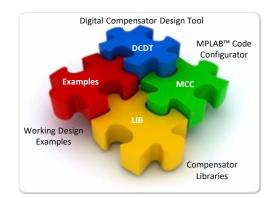
### The Fast Way to a Working Power Supply

- Create MPLAB X project
  - Select device, compiler version, etc.
- Configure device using MCC GUI
  - Adds main.c to project, setup clocks and dividers
  - Configure ADC channel, pins, trigger source, interrupts
  - Configure PWMs including when to trigger ADC
- Add example code snippets
  - State machine, timing loop and soft start
- Create P-Term loop measurement code using PowerSmart DCLD
  - Use GUI to configure source code such as anti-windup clamping
- Measure poles & zeros of plant
- Use PowerSmart DCLD to generate final compensator assembly code










Royalty-free microcontroller and application-specific

hardware and software designs

- Starter kits
- Development boards / EVBs
- Reference designs
- Code examples
- Application notes





#### \_AltRegContext2Setup:

CTXTSWP #0x2 ; Swap to Alternate W-Reg #2

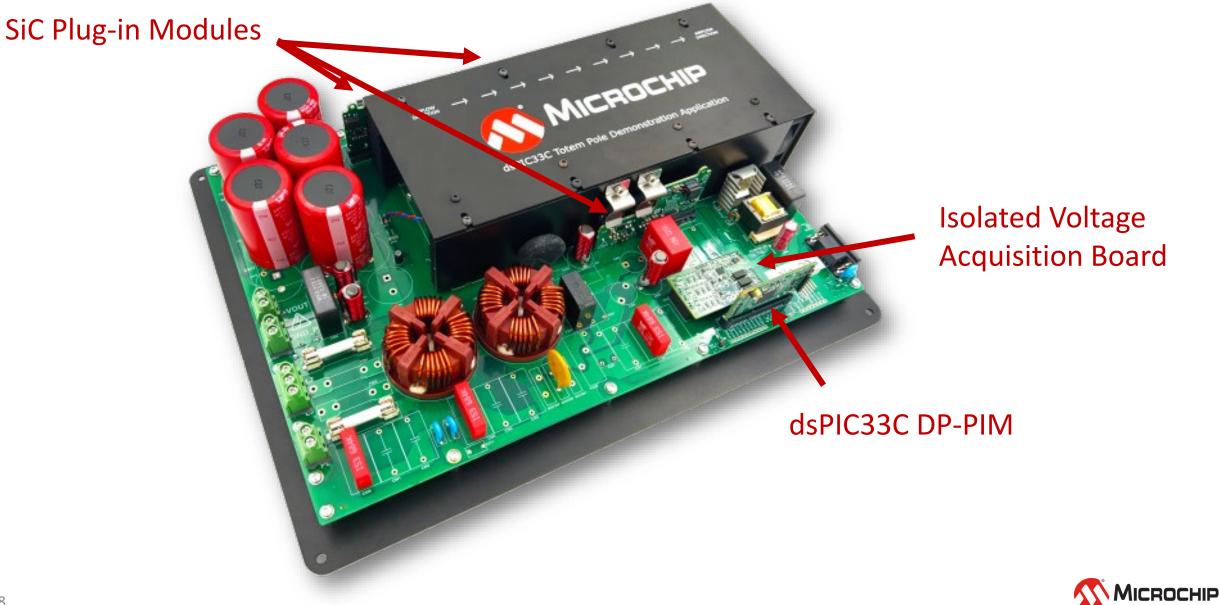
w0 register used for compensator control reference

mov #ADCBUF3, w1 ; Address of ADCBUF3 register mov #CMP2DAC, w2 ; Address of CMP2DAC register

w3-w5 used for ACCAx and MAC/MPY instructions

| mov #BOOST_COMP_2P2Z_POSTSCALER | 2, w6 |
|---------------------------------|-------|
| mov #BOOST_COMP_2P2Z_POSTSHIFT, | w7    |
| mov #_boostOptions,             | w8    |
| mov #_boostABCoefficients,      | w9    |
| mov #_boostErrorControlHistory, | w10   |
| mov #BOOST_COMP_2P2Z_MIN_CLAMP, | w11   |
| mov #BOOST_COMP_2P2Z_MAX_CLAMP, | w12   |

CTXTSWP #0x0 ; Swap back to main register set


return







### dsPIC33C 1PH 3.8 kW/7.6 kW PFC/Inverter



### **DP PIM- Controller Board**



dsPIC33CH512MP506 Digital Power Plug-In Module 🔊 Міскоснір (Part # MA330049)

| Digital Power Plug-In Module                               | SPEC                                               |
|------------------------------------------------------------|----------------------------------------------------|
| This board was used as a main power controller             | ADCs, PWMs, I2C, CAN                               |
| Firmware available for PFC/Inverter currently on CH device | 3 current loops at 100 kHz, voltage loop at 300 Hz |
| only                                                       | Secondary core CPU load: 80%                       |
|                                                            |                                                    |



## **Isolated Voltage Acquisition Board**

https://www.l-tek.com/web-shop/acacquisition-board-mic0001/

Assembled for LV operation!



#### SPEC

4V<Vdd<10V, 100 mÅ<sub>max</sub> 270 Vac<sub>max</sub> 4 kV Isolation 100 kHz Vin sampling, 10 MHz SPI

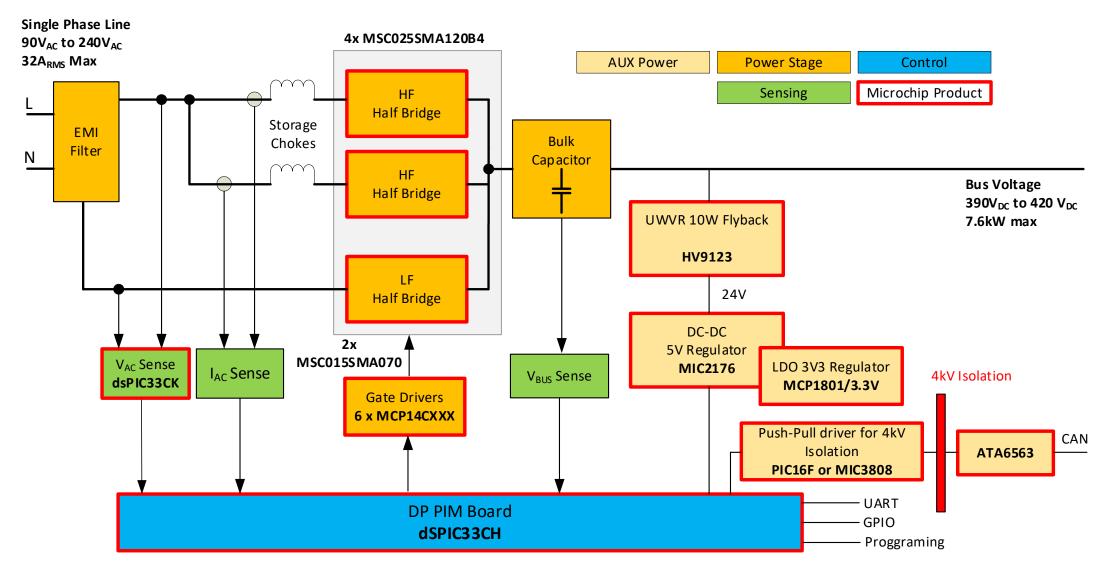


### **SiC FET Plugin Module**

MSC025SMA120B4 MSC040SMA120B4 MCHP Driver 4L PCB 1.65 mm 105 µm Copper outer 70 µm inner 70x55 mm

#### dsPIC33C DP-PIM

#### SiC FET PIM- MSC025SMA120B4


Generic half bridge board with SiC FETs, gate drivers, AUX supply, signal isolation, temp. sense, intelligence and more... This board was used to provide switching legs for power conversion and rectifier leg. Two are needed to operate PFC/Inverter in 1Ph Mode Three are needed to operate 3Ph Mode

#### SPEC

4.5V<Vdd<5.5V 4 kV Isolation, 4 pF<sub>max</sub> Temp. Sense, I2C comunication Microchip driver



## **Block Diagram**





# SiC Design Support - Hardware

| Hardware Platform – Key Application                               | AC-DC        | DC-DC        | DC-AC        | Available for<br>Purchase |
|-------------------------------------------------------------------|--------------|--------------|--------------|---------------------------|
| High-Voltage Auxiliary E-Fuse Technology Demonstrator             |              |              |              | $\checkmark$              |
| SP6LI mSiC <sup>™</sup> MOSFET Module Evaluation Board            |              |              |              | $\checkmark$              |
| <u>30 kW 3-Phase Vienna PFC Reference Design</u> – EV Charging    | · 🗸          |              |              | Design Files<br>Available |
| <u>11 kW 3-Phase Totem-Pole PFC Demonstrator</u> – OBC            | $\checkmark$ |              | $\checkmark$ | $\checkmark$              |
| <u>3.8 kW/7.6 kW Totem Pole Demonstrator</u> – OBC                | $\checkmark$ |              | $\checkmark$ | $\checkmark$              |
| <u>30 kW DC-DC Polymorphic Converter Ref Design</u> – EV Charging | r<br>b       | $\checkmark$ |              | Design Files<br>Available |
| <u>11 kW Dual Active Bridge DC-DC (OBC) Demonstration</u> – OBC   |              | $\checkmark$ |              | $\checkmark$              |
| 250V - 1000V (63W) Auxiliary Power Supply Ref Design              |              | $\checkmark$ |              | Design Files<br>Available |
| Mersen 150 kVA 3-phase SiC Power Stack Evaluation Kit             | $\checkmark$ | $\checkmark$ | $\checkmark$ | Design Files<br>Available |



# **mSiC<sup>™</sup> Solutions Design Support**

### **Software simulation tools**

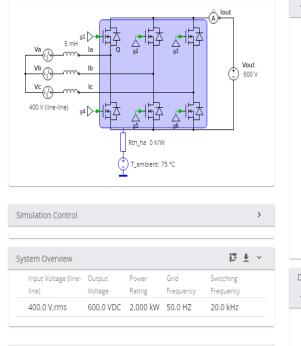
#### **SiC Simulation Models**

- mSiC SPICE and PLECS component models
- SiC Vienna PLECS models

#### **MPLAB® SiC Power Simulator**

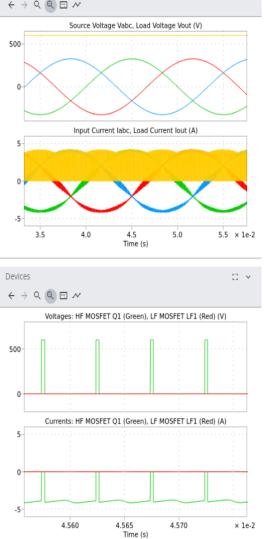
- Free PLECS-based online <u>MPLAB SiC power simulator</u>
- Quickly evaluate Microchip's mSiC power devices and modules across various topologies

#### **MPLAB<sup>®</sup> Mindi<sup>™</sup> Analog Simulator**


- Microchip's free circuit simulation software available for download at <a href="http://www.microchip.com/Mindi">www.microchip.com/Mindi</a>
- Uses SIMetrix and SIMPLIS simulation environment for SPICE and piecewise-linear modeling, respectively





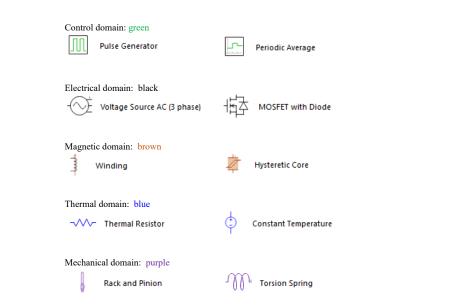

# **MPLAB® SiC Power Simulator**

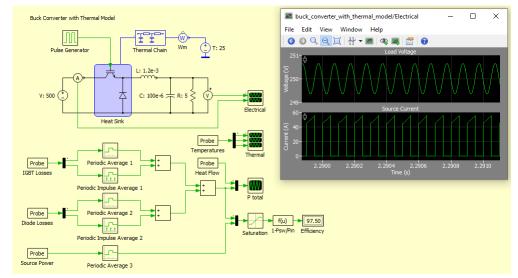
### License-free online SiC power simulator



| Temperatures       |               |                    | 17 ± ×        |
|--------------------|---------------|--------------------|---------------|
| Number of Parallel | MOSFET Max Tj | Heatsink Max Temp. | Ambient Temp. |
| 1                  | 75.6 °C       | 75.0 °C            | 75.0 °C       |

| Losses Overview | I          |                 | 17 ± ×     |
|-----------------|------------|-----------------|------------|
| Switching       | Conduction | Combined Losses | Efficiency |
| 1.40 W          | 1.44 W     | 2.84 W          | 99.86 %    |



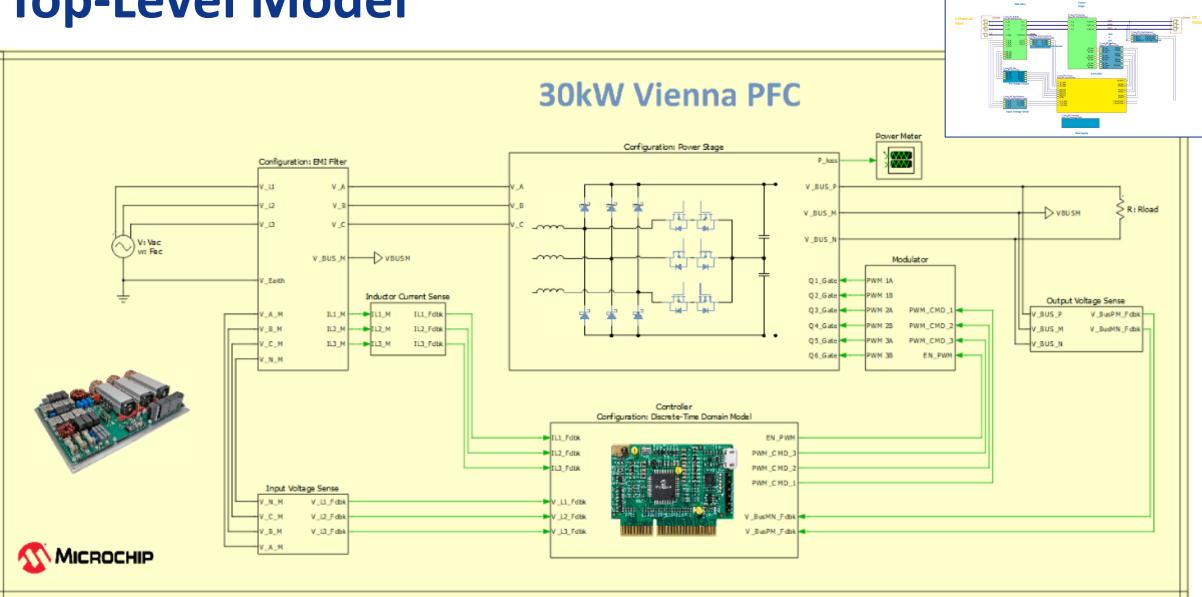


- Open online access to customers
  - Test Microchip mSiC device and power module performance, and more
- Evaluate Microchip mSiC models risk-free
  - Web-based model for anywhere access
  - No software license required
- Multiple topologies and over 45 device and power module models
  - Component level details



## **PLECS Software**

- <u>Piecewise-Linear Electrical Circuit Simulation (PLECS) by Plexim</u>
- Power electronics circuits and systems simulation tool
- Uses ideal switches to quickly and efficiently simulate dynamic behavior of complex systems
- Multi-domain approach to simultaneously simulate the control, electrical, magnetic, thermal, and mechanical domains
- Supports Processor-In-the-Loop (PIL) and Hardware-In-the-Loop (HIL)
- Similar tools: Matlab/Simulink, PSIM, Opal RT, SaberRD
- SiC competitors providing reference designs and component models in PLECS
- Demo mode available, allows users to build and simulate models
- Plexim currently offering 90-day trial license (Video walk-through of PLECS Standalone installation)
  - Windows: <a href="https://www.plexim.com/support/videos/installing-standalone-win">https://www.plexim.com/support/videos/installing-standalone-win</a>
  - Mac: <u>https://www.plexim.com/support/videos/installing-standalone-mac</u>
  - When requesting license, select PLECS Standalone and PIL








**Back to Content** 

## **Top-Level Model**

**Reference Design Schematic** 





# mSiC<sup>™</sup> Product Portfolio | 700V, 1200V, 1700V, 3.3 kV

| Products     | Packages | Portfolio                                                                                                                                                                                                        |
|--------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bare Die     |          | <ul> <li>700V – 3.3 kV, 15 – 750 mΩ SiC MOSFETs</li> <li>700V – 3.3 kV, 10 – 90A SiC Schottky Barrier Diodes (SBDs)</li> </ul>                                                                                   |
| Discretes    |          | <ul> <li>700V – 3.3 kV, 15 – 750 mΩ SiC MOSFETs</li> <li>700V – 3.3 kV, 10 – 100A SiC Schottky Barrier Diodes</li> </ul>                                                                                         |
| Modules      |          | <ul> <li>700V – 1700V, 1.5 – 40 mΩ SiC MOSFETs</li> <li>700V – 1700V, 50 – 600A SiC Schottky Barrier Diodes</li> <li>650V – 1200V, 25 – 100A Hybrid (Si IGBT + SiC SBD)</li> <li>Custom Power Modules</li> </ul> |
| Gate Drivers |          | <ul> <li>1200V – 3.3 kV Plug-and-Play Gate Drivers</li> <li>Augmented Switching<sup>™</sup> Technology</li> <li>Isolated 5A Gate Driver</li> </ul>                                                               |



### Microchip SiC Portal www.microchip.com/SiC

### Includes

- SiC Bare Die
- SiC Discretes
- SiC Modules
- SiC Gate Drivers
- Featured Videos
- SiC Design Resources
  - Reference Designs and Application Notes
  - Models and Simulation Tools
  - Product Selection Tools
- Support Options



| SiC™ Products                                                                                    |                                                                                                                                                                                                 |                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| adest Portfolio of Silicon Carbide                                                               | (SiC) Products and Solutions                                                                                                                                                                    |                                                                                                                                                                    |
|                                                                                                  | gn, manufacturing and support of SiC devices and power solu<br>n cost, fastest time to market and lowest risk. Our solutions in                                                                 |                                                                                                                                                                    |
| ore Our Products                                                                                 |                                                                                                                                                                                                 |                                                                                                                                                                    |
| • • • • •                                                                                        | = = = =                                                                                                                                                                                         | = = 🔳 🗸 🏉                                                                                                                                                          |
| crete SiC MOSFETs                                                                                | Discrete SiC Diodes                                                                                                                                                                             | Bare Die SiC MOSFETs and Schottky<br>Diodes                                                                                                                        |
| SIC MOSPETs feature best-in-class avalanche<br>edness, short circuit capability and oxide<br>me. | Our SiC Schottky Barrier Diodes (SBDs) offer the<br>widest range of solutions in the market.                                                                                                    | SiC bare die MOSFETs and SBDs are excellent<br>options for advanced power circuits and provide<br>significantly higher power density and efficiency.               |
| Explore SIC MOSFETs                                                                              | Explore SIC Diodes                                                                                                                                                                              | Explore SIC Bare Die                                                                                                                                               |
|                                                                                                  | <ul> <li>Main (%)</li> </ul>                                                                                                                                                                    | The second                                                                                                                                                         |
| MOSFET and Diode Modules                                                                         | Digital Gate Drivers                                                                                                                                                                            | Design Resources                                                                                                                                                   |
| SIC power modules are available in low profile,<br>stray inductance and baseless packaging.      | Our SIC gate drivers incorporate patented<br>Augmented Switching <sup>®</sup> technology and robust<br>short-circuit protection. These digital gate drivers<br>are fully software configurable. | We offer a variety of time-saving reference designs,<br>evaluation kits, models, simulation tools and<br>application notes to accelerate your SiC-based<br>design. |
|                                                                                                  |                                                                                                                                                                                                 | Explore SiC Design Resources                                                                                                                                       |
| Explore SiC Modules                                                                              | Explore SiC Gate Drivers                                                                                                                                                                        | Explore SiC Reference Designs                                                                                                                                      |

e-bandgap SIC semiconductors are used to control and switch high-power electrical devices. They offer several advantages over traditional silicon devices, including high



## Adopt SiC with Ease, Speed and Confidence

# **Contact us at**

www.microchip.com/SiC



