MIL-STD-810H, Change 1

Treo – Labor für Umweltsimulation GmbH, 16.01.2025

PART TWO -- LABORATORY TEST METHODS

Einführung in eine Norm mit >1000 Seiten?

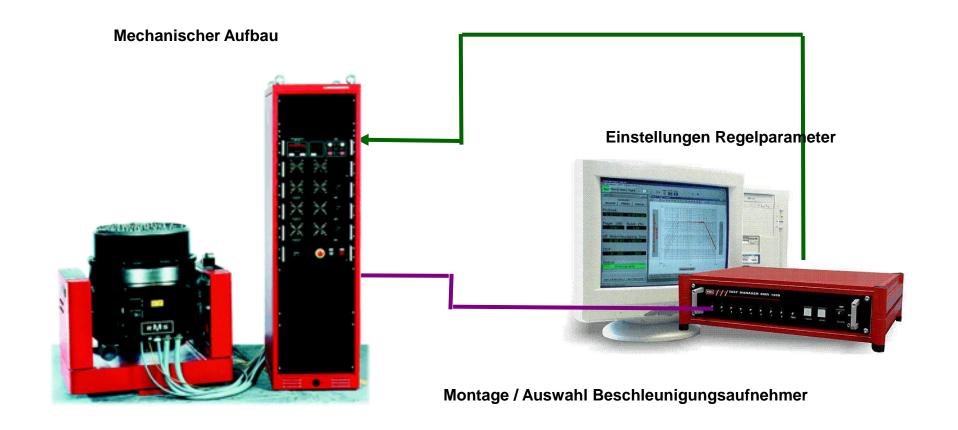
<u>Paragraph</u>		Page
500.6	Low Pressure (Altitude)	500.6-i - 500.6-8
501.7	High Temperature	501.7-i - 501.7-14
502.7	Low Temperature	502.7-i - 502.7-10
503.7	Temperature Shock	503.7-i - 503.7-14
504.3	Contamination by Fluids	504.3-i- 504.3C-2
505.7	Solar Radiation (Sunshine)	505.7-i - 505.7C-9
506.6	Rain	506.6-i - 506.6-14
507.6	Humidity	507.6-i - 507.6A-2
508.8	Fungus	508.8-i - 508.8B-2
509.8	Salt Fog / Corrosive Environments	509.8-i - 509.8-18
510.7	Sand and Dust	510.7-i - 510.7-18
511.7	Explosive Atmosphere	511.7-i - 511.7-10
512.6	Immersion.	512.6-i - 512.6-8
513.8	Acceleration	513.8-i - 513.8A-8
514.8	Vibration	514.8-i - 514.8F-F2
515.8	Acoustic Noise	515.8-i - 515.8B-4
516.8	Shock	516.8-i - 516.8C-8
517.3	Pyroshock	517.3-i - 517.3A-10
518.2	Acidic Atmosphere	518.2-i - 518.2-8
519.8	Gunfire Shock	519.8-i - 519.8C-14
520.5	Combined Environments	520.5-i - 520.5A-3
521.4	Icing/Freezing Rain.	521.4-i - 521.4-8
522.2	Ballistic Shock	522.2-i - 522.2-20
523.4	Vibro-Acoustic/Temperature	523.4-i - 523.4A-8
524.1	Freeze / Thaw	524.1-i - 524.1-6
525.2	Time Waveform Replication	525.2-i - 525.2B-10
526.2	Rail Impact	526.2-i - 526.2-10
527.2	Multi-Exciter Test	527.2-i - 527.2E-38
528.1	Mechanical Vibrations of Shipboard Equipment (Type I - Environmental and	
	Type II - Internally Excited)	528.1-i - 528.1B-4

Vibrations- und Schockprüfungen

Treo – Labor für Umweltsimulation GmbH, 16.01.2025

Warum werden Vibrations- und Schockprüfungen durchgeführt?

- Aufspüren von Schwachstellen und konstruktiven Mängeln (Design, Material)
- Reklamations- und Rückrufkosten einsparen
- Transportsicherheit gewährleisten / Verpackungskosten reduzieren
- Lebensdauerprüfungen
- Verkürzen von Entwicklungszeiten
- Fertigungsnahe Qualitätskontrolle
- Simulation der Einsatzbedingungen / Lebenszeitbelastung (Umweltsimulation)
- Hohe Zuverlässigkeit ist das beste Verkaufsargument
- Oder einfach: "Der Kunde braucht das"



Übersicht über Schwingprüfanlagen

- Elektrodynamische Schwingprüfanlagen (Shaker)
 - Mit Gleittisch oder ohne
 - Verschiedene Anregungsarten bei Vibration (Sinus, Rauschen und Kombinationen) und Schock (Sägezahn, Halbsinus, Trapez usw.)
 - Frequenzbereich von wenigen Hz bis 2-3kHz
 - Wegamplituden von 1 bis 4 Zoll (p-p)
 - Kraftvektoren von wenigen kN bis mehrere hundert kN
- Falltische (Schockprüfung), pneumatisch oder hydraulisch
 - Einachsige Belastung
 - Fallhöhe bestimmt Schockdauer
 - Schockform üblicherweise Halbsinus, andere nur mit erheblichem Aufwand
- Es gibt außerdem
 - Servohydraulische Schwingprüfanlagen
 - Piezoelektrische Schwingerreger
 - Akustische Schwingerreger
 - Mechanische Unwuchterreger
 - •

Elektrodynamische Prüfanlagen (Shaker)

Elektrischer Anschluss / Messtechnik

Quellen: RMS Regelungs- und Meßtechnik Dipl.-Ing. Schäfer GmbH & Co. KG

Elektrodynamische Prüfanlagen (Shaker)

- Gleittisch ermöglicht Prüfung aller Achsen (x, y, z) in Einbaulage
- Nachteile:
 - Umbauaufwand, insbesondere bei größeren Anlagen
 - Gewicht des Gleittisches muss mit bewegt werden => payload Reduzierung

Aufspannvorrichtungen

Aufspannvorrichtungen dienen der Kraftübertragung zwischen Armatur des Schwingerregers und des Prüflings.

Anforderungen an Aufspannvorrichtungen sind:

- Resonanzfrei für den notwendigen Frequenzbereich
- möglichst hohe dynamische Steifigkeit
- möglichst geringes Gewicht / Schwerpunktoptimierung
- möglichst geringe Größe / einfache Formgebung
- kostengünstig
- Vielseitig verwendbar

Winkel

Prüfwürfel

Testadaptionen

Ziel der Testadaption bei Vibrations- und Schockprüfungen ist es, den Prüfling einerseits so auf der Prüfanlage zu befestigen, wie er in der Realität auch befestigt wird, andererseits darf die Prüfadaption selbst das Prüfergebnis möglichst wenig beeinflussen.

- Die Prüfadaption wird über ein Lochraster an der Aufspannvorrichtung/dem Gleittisch befestigt
- Als Material sollten bevorzugt Platten aus ALMG Si F 28 oder EN AW 6082 verwendet werden.
- Die Platten sollten mindestens 25 mm dick sein.
- Wenn die Platten miteinander verschraubt werden müssen, z.B. um einen Winkel herzustellen, sollten Schrauben der Festigkeit 10.9 und mindestens der Größe M8 verwendet werden.
- Der Aufbau soll möglichst kompakt konstruiert sein, so dass möglichst keine freien Überhänge entstehen und die Adaption nicht zu schwer wird.
- Die Flächen, die an die Prüfanlage geschraubt werden, müssen verzugsfrei und plangefräst sein.
- Die Kraft muss über die Prüflingsbefestigung eingeleitet werden, so dass gemäß dem zu erwartenden Kraftfluss konstruiert werden sollte.
- Es kann trotzdem immer noch vorkommen, dass bei einer bestehenden Testadaption Optimierungen hinsichtlich des Schwingverhaltens notwendig sind, um den Test starten zu können.

Elektrodynamische Prüfanlagen (Shaker): Kategorien und Anregungsarten

- Vibration: Method 514.8
 - Sinusförmige Anregung
 - Rauschförmige Anregung
 - Überlagerte Anregung
- Schock: Method 516.8
- Shipboard Equipment: Method 528.1 (siehe MIL-STD-167-1A)

Life Phase	Platform	Category	Materiel Description	Annex	Test ¹
Manufacture /	Plant Facility / Maintenance	Manufacture / Maintenance processes			2
Maintenance	Facility	Shipping, handling ESS	Materiel / Assembly / Part	В	3
		4. Secured Cargo	Materiel as secured cargo ⁴		I
	Trucks and	5. Loose Cargo	Materiel as loose cargo ⁴		II
	Trailers	6. Large Assembly Transport	Large assemblies, shelters, van and trailer units ⁴		III
Transportation	Aircraft	7. Jet 8. Propeller 9. Helicopter		С	
	Watercraft ⁵	10. Marine Vehicles	Materiel as cargo		I
	Railroad	11. Train			
		12. Jet			
	Aircraft	13. Propeller	Installed Materiel		I
		14. Helicopter			
	4	15. Jet	Assembled stores		IV
	Aircraft	16. Jet	Installed in stores		I
	Stores	17. Propeller	Assembled / Installed in stores	,	IV/I
		18. Helicopter			
Operational	Missiles	19. Tactical Missiles	Assembled / installed in	D	14/1
Operational	Ground	20. Ground	missiles (free flight) Installed Materiel in wheeled /		
	Ground	Vehicles	tracked / trailer		I/III
	Watercraft ⁵	21. Marine Vehicles	Installed Materiel		
	Engines	22 Turbino			I

Elektrodynamische Prüfanlagen (Shaker), Anregungsart Sinus

Gleitsinusprüfung, Sinussweep

- Üblicherweise logarithmischer Frequenzdurchlauf in Oktaven/min
 - Alle Eigenfrequenzen werden mit unterschiedlicher Zeit beansprucht
 - Die Anzahl der Lastwechsel ist gleich
 - Typisch 1 4 Oktaven/min

Wichtig: Damit sich die Amplitude einer Resonanzfrequenz maximal ausbilden kann, sollte diese langsam durchfahren werden.

Prüfung mit einer oder mehreren Festfrequenzen (z.B. auch Resonanzverweilen)

- Eine sinusförmige Beschleunigung mit einer Amplitude g_{peak} wirkt über eine definierte Zeitdauer mit einer Frequenz auf den Prüfling ein.
- Die Beschleunigung am Prüfling ist abhängig von dem Verhältnis Anregungsfrequenz zu Resonanzfrequenz und seiner Resonanzüberhöhung.
- Schrittsinus (stepped sine): Halten der Frequenz mit Übergang auf nächste Frequenz, Schrittweite delta f.

Prüfparameter:

Beschleunigung oder Schwingweg [g; m/s²; mm], Frequenz [Hz], Zeitdauer [s; min; h; Lastwechsel]

Elektrodynamische Prüfanlagen (Shaker), Anregungsart Rauschen

Rauschprüfung, Breitbandrauschen

 Beim Rauschen werden alle Frequenzen im Frequenzbereich fu und fo gleichzeitig angeregt, dadurch auch alle Eigenfrequenzen.

Rauschen ist nicht deterministisch und basiert auf statistischen Betrachtungen.

Prüfparameter:

Leistungsdichte PSD
 (Payer Spectral Density) adar ASE

(Power Spectral Density) oder ASD

Effektivwert

Frequenzbereich fu; fo, Stützstellen

Zeitdauer

Frequenzauflösung

Pegelstufen

Statistische Freiheitsgrade DOF

(Drive) Clipping/Crest-Faktor/Sigma

Linienprüfung

 $g^2/Hz ((m/s^2)^2/Hz)$

grms (m/s²rms)

Hz

s, min, h

df = Bandbreite / Linienzahl

-12, -6, 0 dB (typisch)

120 (typisch)

3 (typisch)

Verletzung Warn- und Abbruchgrenzen

Elektrodynamische Prüfanlagen (Shaker), überlagerte Anregungsarten

Anwendung SoR (Sine on Random)

- Motor- und Getriebeanbauteile Automobil
- Hubschrauber (SoRoR)
- Gunfire, Waffensimulation Kampflugzeug und –hubschrauber

Anwendung RoR (Random on Random)

Transportsimulation f
ür Anbauteile, Munition in Panzern und kettengetriebenen Fahrzeugen

Elektrodynamische Prüfanlagen (Shaker), Schock

Prüfungen mit klassischen Stoßformen

Als Prüfanregung dient ein Beschleunigungsstoß mit bekanntem Zeitverlauf.

- Der Prüfling wird mit kurzen Beschleunigungsstößen angeregt
- Alle schwingungsfähigen Gebilde im Prüfling werden angeregt
- Die Beschleunigung und die Anregungsfrequenzen werden durch das Stoßspektrum bestimmt

Schockzeitverläufe

- Halbsinus-Stoß
- Sägezahn-Stoß
- Dreieck-Stoß
- Trapez-Stoß
- Rechteck-Stoß

Elektrodynamische Prüfanlagen (Shaker), Schock

Prüfparameter

- Beschleunigung g; m/s²
- Impulsbreite ms
- Impulsform Halbsinus; Sägezahn; Trapez; Dreieck; Rechteck
- Warngrenzen IEC 60068, MIL-STD, ...
- Stoßrichtung positiv; negativ
- Anzahl der Stöße Zahl
- Wiederholrate Schocks/s
- Bewertung ggf. gem. Shock Response Spectrum (SRS)

IP-Prüfungen

Treo – Labor für Umweltsimulation GmbH, 16.01.2025

Begriffe

IP steht für "International Protection" oder auch "Ingress Protection"

Gehäuse schützen vor den direkten Zugang für gefährlichen Teilen.

Wichtig! Bauteile, die ohne Hilfe von Schlüsseln oder Werkzeugen entfernt werden können, müssen vor den Prüfungen zum Zugang zu gefährlichen Teilen entfernt werden.

Normen

• MIL-STD-810H, Change 1 = (Militär)

• DIN EN 60529 Schutzarten durch Gehäuse = (Allgemein Gehäuse)

• ISO 20653 Road vehicles = (Fahrzeuge)

• *RTCA/DO-160G* = (*Luftfahrt*)

• DIN EN 60598-1 = (Beleuchtung)

MIL-STD-810H, Change 1

Method 506.6 Rain

- Procedure I: Rain and Blowing Rain

- Procedure II: Exaggerated

- Procedure III: Drip

Method 510.7 Sand and Dust

- Procedure I: Blowing Dust

- Procedure II: Blowing Sand

Method 512.6 Immersion

- Procedure I: Immersion (1m / 30min)

- Procedure II: Fording

Schutz gegen den Zugang zu gefährlichen Teilen gem. DIN EN 60529

Erste Kennziffer	Schutzgrad		
	Beschreibung	Prüfmittel	Kraft
0	Nicht geschützt	./.	./.
1	Handrückensicher	Kugel, 50 mm	50 N ±10%
		Durchmesser	
2	Fingersicher	Prüffinger, 80mm Länge und 12mm Durchmesser	10 N ±10%
3	Werkzeugsicher	Zugangssonde, 2,5 mm Durchmesser	3 N ±10%
4	Drahtsicher	Zugangssonde, 1 mm Durchmesser	1 N ±10%
5	Drahtsicher	Zugangssonde, 1 mm Durchmesser	1 N ±10%
6	Drahtsicher	Zugangssonde, 1 mm Durchmesser	1 N ±10%

Schutz gegen feste Fremdkörper gem. DIN EN 60529

Erste Kennziffer	Schutzgrad			
	Beschreibung	Prüfmittel	Kraft	
0	Nicht geschützt	./.	./.	
1	Geschützt gegen feste Fremdkörper	Kugel, 50 mm Durchmesser	50 N ±10%	
2	Geschützt gegen feste Fremdkörper	Kugel, 12,5 mm Durchmesser	30 N ±10%	
3	Geschützt gegen feste Fremdkörper	Zugangssonde, 2,5 mm Durchmesser	3 N ±10%	
4	Geschützt gegen feste Fremdkörper	Zugangssonde, 1 mm Durchmesser	1 N ±10%	
5	Staubgeschützt	Staubkammer	./.	
6	Staubdicht	Staubkammer	./.	

Abnahmebedingungen gem. DIN EN 60529

- Die Zugangssonden müssen ausreichen Abstand vor gefährlichen Teilen haben.
- Die Fremdköper dürfen nicht vollständig eindringen

Anmerkung

Gehäuse gehören zwangsläufig in eine der beiden Kategorien:

Kategorie 1: Gehäuse, bei denen das übliche Betriebsspiel die Betriebsmittel eine Verminderung des Luftdruckes innerhalb des Gehäuses unterhalb des Druckes der umgebenden Luft verursacht, z.B. durch Temperaturschwankungen.

Kategorie 2: Gehäuse bei denen kein Druckunterschied entstehen kann.

Kategorie 1:

Da die Prüfung gem. Norm mit Unterdruck durchgeführt wird, muss eine Bohrung in das Gehäuse eingebracht werden, was vorab mit unserem Prüfingenieur zu klären ist.

Kategorie 2:

Kategorie 2 kann nur max. IP5X haben. Für IP6X ist ein Unterdruckanschluss zwingend erforderlich.

Gemäß ISO 20653 Prüfung IP5KX & IP6KX ohne Unterdruck.

Staubprüfungen gem. DIN EN 60529

Staubkammer (IP5X & IP6X)

Zu beachten:

Es muss immer ausreichend Luft-/Staubzirkulation in der Kammer gegeben sein. Wenn mehrere Prüflinge gleichzeitig geprüft werden, müssen die auf der Fläche verteilt werden.

Die Kammer verfügt über einen Unterdruckanschluss. Die Prüfdauer ist abhängig von der Dichtigkeit des angeschlossenen Prüflings. Wenn mehrere Prüflinge gleichzeitig an den einen Anschluss angeschlossen werden, ist eine normgerechte Prüfung praktisch fast nicht durchführbar.

Es ist also besser, mehrere Prüflinge gleichzeitig nur ohne Unterdruck (Kat. 2) zu prüfen.

Schutzgrad gegen Wasser

Zweite Kennziffer	Schutzgrad					
	Beschreibung	Prüfmittel	Realer Vergleich	Wassermenge	Prüfdauer	
0	Nicht geschützt	./.	./.	./.	./.	
1	Geschützt gegen Tropfwasser	Tropfbecken	Leichter Regen von oben	$1\pm\frac{0.5}{0}$ mm/min	10 min	
2	Geschützt gegen Tropfwasser mit bis zu 15° Neigung	Tropfbecken	Leichter Regen mit leichtem Wind	$3\pm\frac{0.5}{0}$ mm/min	10min, 2,5 min je Neigung	
3	Sprühwassergeschützt	Spritzbogen	Starker Regen mit Wind	0,07 l/min ±5% pro Öffnung	10 min	
		Spritzbrause		10 l/min ±5%	1min/m², min. 5 min	
4	Spritzwasser geschützt	Spritzbogen	Starker Regen von allen Seiten	0,07 l/min ±5% pro Öffnung	10 min	
		Spritzbrause		10 l/min ±5%	1min/m², min 5 min	
5	Strahlwassergeschützt	Strahldüse	Gartenschlauch	12,5 l/min ±5%	3min/m², min. 3 min	
6	Starkes Strahlwasser	Strahldüse	Feuerwehrschlauch	100 l/min ±5%	3min/m², min. 3 min	
7	Zeitweiliges Untertauchen	Tauchbecken	Kurzes Untertauchen	./.	1 m, 30 min	
8	Dauerhaftes Untertauchen	Tauchbecken Druckkammer	Dauerhaftes Untertauchen	./.	Nach Absprache	
9	Hochdruckstrahlsicher mit hoher Wassertemperatur	Drucklanze	Hochdruckreiniger	15 ± 1 l/min	1min/m², min. 3 min	

Abnahmebedingungen (IP bedeutet NICHT wasserdicht)

Eingedrungenes Wasser darf nicht:

- In einer solchen Menge eingedrungen sein, dass das ordnungsgemäße Arbeiten die Betriebsmittel oder die Sicherheit beeinträchtigt ist;
- Sich an Isolierteilen ablagern, wo es zu Kriechströmen führen könnte;
- Spannungsführende Teile oder Wicklungen erreichen, die nicht zum Betrieb in nassem Zustand ausgelegt sind;

Anmerkung:

Ein höherer Schutzgrad bei den Wasserprüfungen bedeutet nicht automatisch, dass die Schutzgrade darunter mit abgedeckt sind.

- Die zweiten Kennziffer 7 oder 8 decken die zweiten Kennziffer 5 und 6 nicht ab.
- Die zweite Kennziffer 9 deckt die zweiten Kennziffern 5, 6, 7 und 8 nicht ab.

Vergossene Prüflinge

Wasserprüfung:

Eine normgerechte Prüfung ist durchführbar. Das normgerechte Begutachten allerdings nicht, da es nicht möglich ist, das Gehäuse zu "öffnen" und auf das Eindringen von Wasser hin zu untersuchen.

Ein übliches Vorgehen bei der Prüfung elektrischer Geräte mit vergossenem Gehäuse ist daher, dass man eine Isolationswiderstandsmessung sowie einen Funktionstest vorher und nachher durchführt. Das Wiegen des Prüflings vor und nach einer Wasserprüfung kann außerdem als Beurteilungskriterium herangezogen werden.

Staubprüfung:

Eine normgerechte Prüfung ist nicht durchführbar, da kein Unterdruck im Gehäuse erzeugt werden kann. Außerdem ist es nicht möglich, das Gehäuse zu "öffnen" und auf das Eindringen von Staub hin zu untersuchen.

Ein akkreditiertes Labor kann demnach ein Bestehen einer Prüfung IP5X oder IP6X nicht bestätigen, da sich die Prüfung nicht durchführen lässt.

Ein übliches Vorgehen bei der Prüfung elektrischer Geräte mit vergossenem Gehäuse ist daher, dass man eine Tauchprüfung IPX7 durchführt, wobei eine Isolationswiderstandsmessung sowie einen Funktionstest vorher und nachher durchgeführt werden. Das Wiegen des Prüflings vor und nach einer Wasserprüfung kann außerdem als Beurteilungskriterium herangezogen werden.

Beim Bestehen der Tauchprüfung wird dann die Annahme gemacht, dass das Gerät auch staubdicht ist. Im Prüfbericht muss dies aber als persönliche Meinung gekennzeichnet sein.

Alternativ kann eine Prüfung gem. DIN EN 60068-2-17 Dichtheit durchgeführt werden. Dies ist aber weniger populär, da das Ergebnis keine IP-Klasse ist.

Entwicklungsbegleitende Prüfungen

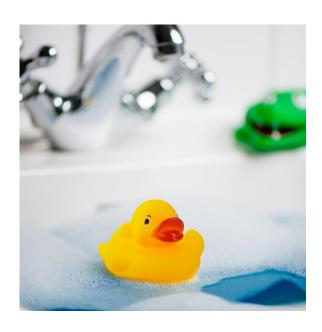
IP-Prüfungen führen wir häufig entwicklungsbegleitend mit Kunden im Labor durch.

Die Prüfungen werden dazu meistens gemäß der Normen durchgeführt.

Berührschutz / Eindringen von Sonden:

Kann häufig anhand der Konstruktion beurteilt werden

Staubprüfungen:


Vorabbeurteilung der Dichtigkeit mit Unterdruck im Labor (gemessener Volumenstrom)

Wasserprüfungen:

• Erkenntnisgewinn durch 1:1 Versuchsbetreung bei uns im Labor und z.B. iteratives Vorgehen, schnelles Prüfen und Auswerten unterschiedlicher technischer Lösungen. Höhere Auswertungstiefe.

Hinweise zu typischen "Stolpersteinen":

• Z.B. Art und Ausführung der Dichtung (Nahtstellen, "Einmaldichtung", Kombidichtung EMV-IP, …) oder Kombination von bereits getesteten Bauteilen (Zukauf von Schaltern o.ä. oder Einbau von Displays in Standardschränke)

