

<u>STAYING COOL WITH</u> <u>HIGH CURRENT</u>

WURTH ELEKTRONIK MORE THAN YOU EXPECT

ABOUT ME

DON OLMSTEAD

BSME from South Dakota State University

Applications Engineer

Specialization: Thermal Management & Electromechanical

Contact: Donald.Olmstead@we-online.com

TABLE OF CONTENTS

- High current connections
 - What is Redcube
 - How they work
 - How to assemble
- How to stay cool
 - Estimating temperature
 - Thermal bottlenecks
 - Increasing heat dissipation

HIGH CURRENT CONNECTIONS

PARALLEL CONNECTIONS

- For higher currents more connections are needed
- Takes up more space with additional current
- Hard to transfer high currents from board to board
- What if you need more?

Photo by Retired electrician BB CY

Photo C J Cowie BB CY

WHAT ARE REDCUBES

- High Current connectors
- Performance
- Heat dissipation
- Strength

REDCUBE Terminals for high current applications

PRESSFIT SOLUTIONS

- Up to 350A
- Space saving
- Various configurations
- M3-M10
- Extremely high environmental stability
- Lowest FIT value in system

REDCUBE PULL-OUT/UP? TEST

- Average extraction force of 100N (~22lbf) per pin
- 6-36 pins per connector = up to 810 lbf!
- Excellent in environments with high vibration
- More pins = More current and strength

HOW PRESSFIT WORKS

- Pressed into board
- Cold welded connection
- Homogenous connection from pin to copper
- Tin acts as lubrication and sealant
- Very low contact resistance

Homogeneous cold welding

TWO PART SYSTEM

- Lower profile than traditional Pressfits
- Up to 320A
- Indirect torque on the PCB
- Various thread options
- M3 to M8

1. Basic element is first pressed in the pcb

- 2. Second element is pressed in the basic element
- a. with internal thread

b. with only hole

c. with threaded screw

PLUGGABLE SOLUTION

- Easily pluggable
- Automatic Locking
- Up to 120A
- Standard hexagonal crimp tools used
- Cable can be a limiting factor

HOW TO PRESSFIT

- Pressfit after reflow process
- ≥2 Ton Press with end stop
- Support backing required to prevent damage
- Can be pressed into bus bars if max thickness isn't exceeded

15 STAYING COOL WITH HIGH CURRENT PUBLIC | DON 0 | 10/9/24

DON'T SOLDER A PRESSFIT

- Done after soldering processes
- Bad soldering of parts due to thermal absorption
- Melts tin coating of Redcube
- Problematic for threads

THERMAL EXPANSION

- Reflow temperatures can destroy cold weld
- Different thermal expansion coefficients
- Increased resistance
- Reduced mechanical stability

EASY PROCESSING

Redcube SMT

- Easy pick and place manufacturing
- Up to 85A
- High packing density
- Vertical or right angled
- Allows mechanical mounting to enclosure
- Styles have different shear strength

HYBRID SOLUTION

Redcube THR

- Greater mechanical stability than SMT
- Optimal current distribution for multilayer applications
- Allows for automation
- Up to 85A
- M3 M5

SMT APPLICATIONS

90° SMT + THR

Attachment to backplane or housing

90° Pressfit + SMT with thread

DERATING DUE TO TEMPERATURE

- Max current decreases with ambient temperature
- Ambient temp means surrounding air not outside air
- Enclosures can act like ovens for parts

Derating Measurement for REDCUBE PRESS-FIT

STAYING COOL

HOW HEAT IS TRANSFERRED

Conduction

Heat flow through a medium

- ~ 80% of heat flow
- Convection

Transportation of heat due to a moving fluid

- ~ 10% of heat flow
- Radiation

Heat transported through electromagnetic waves ~10% of heat flow

HEAT DISSIPATION

- Heat causes performance or safety issues
- Conduct heat a to exterior surface
- Heat is dissipated by Radiation and Convection
- Thermal materials assist with heat dissipation

HEAT TRANSFER FORMULAS

- Long, complicated, and time-consuming equations
- Simplify to an easier 1D model
- Thermal Conductivity (k), Area (A), and
 Distance (d) are driving factors for conduction
- Surface area (A_s) is driving factor for dissipation

$\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) \cdot Q = \frac{kA(T_2 - T_1)}{d} \quad q_v = \rho c_p \frac{\partial T}{\partial t}$

Convection

$$\left(u\frac{\partial T}{\partial x} + v\frac{\partial T}{\partial y} \quad Q = hA_s(T_s - T_\infty) v\frac{\partial^2 T}{\partial z^2}\right) + \mu\Phi + \dot{q}$$

Radiation

$$Q_{12} = -Q = \sigma \tilde{\epsilon} \tilde{A}_{S} (T_{S}^{4} - T_{\infty}^{4}) \quad (T_{1}^{4} - T_{2}^{4})$$

CONDUCTION

- Enclosures can act like ovens
- Heat needs to be moved to a desirable area
- Thermal interface materials (TIM) used to conduct heat
- Many resistances to heat flow
- Thermal conductivity (k) =
 How easily heat is transferred

THERMAL RESISTANCES

- Commonly given for ICs, MOSFETs, and Heatsinks
- Rarely given for TIMS due to height and area variations
- Can be calculated with variables given in datasheets
- Can substitute into conduction formula

Symbol	-				
	Parameter	D ² PAK	TO-220	TO-247	Unit
R _{thj-case}	Thermal resistance junction-case max		0.83		°C/W
R _{thj-pcb}	Thermal resistance junction-pcb max ⁽¹⁾	30			°C/W
R _{thj-amb}	Thermal resistance junction-ambient max		62.5	50	°C/W

1. When mounted on 1 inch² FR-4, 2 Oz copper board

$$R_t = \frac{d}{kA}$$

$$Q = \frac{kA(T_2 - T_1)}{d} \qquad \longrightarrow \qquad Q = \frac{(T_2 - T_1)}{R_t}$$

Table 3. Thermal data

SERIES HEAT RESISTANCE

- Similar to Ohms Law
- Can be modeled as series resistors
- Simplified model for estimation
- Can estimate the temperature at each contact surface
- Gives a rough estimate of temperature

$$Q = \frac{(T_2 - T_1)}{R_t}$$
 $I = \frac{(V_2 - V_1)}{R}$

EXAMPLE: GAP FILLING

- TO-220 dissipating 6W inside enclosure
- TO-220 is 10x15mm
- 1mm gap
- 0.5mm thick aluminum

Thermal Gap Filler: WE-TGF

- Thermal Conductivity = 1 10 (W/m·K)
- Soft and conformable
- Naturally tacky, self adhesive
- Optimal performance: compression 10-30% or 10-30 psi

General Purpose Gap Filler

CALCULATING RESISTANCE OF TIM

- Thermal conductivities
 - AI = 237 W/m*K
 - TIM = 3 W/m*K

$$R_t = \frac{d}{kA}$$

Symbol	Barameter		Unit		
	Farameter	D ² PAK	TO-220	TO-247	Unit
R _{thj-case}	Thermal resistance junction-case max		0.83		°C/W
R _{thj-pcb}	Thermal resistance junction-pcb max ⁽¹⁾	30			°C/W
R _{thj-amb}	Thermal resistance junction-ambient max		62.5	50	°C/W

Table 3. Thermal data

1. When mounted on 1 inch² FR-4, 2 Oz copper board

$$237\frac{W}{m*K}*\frac{1}{1000} = 0.237\frac{W}{mm*K}$$

$$3\frac{W}{m*K}*\frac{1}{1000} = 0.003\frac{W}{mm*K}$$

$$R_{Al} = \frac{0.5mm}{(0.237 \frac{W}{mm * K})(10mm * 15mm)} = 0.014 \frac{{}^{\circ}C}{W} \qquad R_T$$

$$R_{TIM} = \frac{1mm}{(0.003 \frac{W}{mm * K})(10mm * 15mm)} = 2.22 \frac{{}^{\circ}C}{W}$$

CALCULATION WITH TIM

Calculate backwards from heatsink (T_{HS} = 87°C)

$$Q = \frac{(T_2 - T_1)}{R_t} \longrightarrow T_2 = Q * R_t + T_1$$

CALCULATION WITHOUT TIM

Calculate backwards from ambient (T_{amb} = 20°C)

Gap Filling Solutions: **WE-TGF**

- Fills large gaps between hot components and cooling assemblies
- Cover multiple components without worrying about short circuits

EFFECT OF REDUCING HEIGHT

- 6W Heat loss
- Reduced the gap from 1mm to 0.23mm
- Reduced Conductivity from 3 W/m*K to 1 W/m*K

VS

Thermal Insulating Sheet: **WE-TINS**

- Electrically insulating
- Withstands high mechanical stress
- Puncture and sheer resistant
- Thermal Conductivity = 1 3.5 (W/m·K)

High Mechanical Stress Applications

Gap Filling Solutions: **WE-TINS**

- Simple interface with electric insulation
- Used mainly in power applications

THERMAL CALCULATION

- Thermal resistance is lower
- Temperature is lower
- Higher Thermal Conductivities are exponentially more expensive

Heat loss	Surface Temp	Thermal Conductivity	Gap to fill	Area	Heatsource Length	Heatsource Width	R_HS	R_TIM	R_jC
(W)	(°C)	(W/m*K)	(mm)	(mm^2)	(mm)	(mm)	(°C/W)	(°C/W)	(°C/W)
6	87	1	0.23	150	10	15	0.014	1.53	0.8

Temp_HS/TIM	87 °C	Vs 87.08°C for 3 W/m*K @ 1mm
Temp_C/TIM	96 °C	Vs 100.42°C for 3 W/m*K @ 1mm
Temp_j	101 °C	Vs 105.22°C for 3 W/m*K @ 1mm

FILLING LARGE GAPS

- What if you need to fill large gaps
- Large gaps lead to larger thermal bottleneck
- How can we keep high performance over large gaps?

Thermal Graphite Foam Gasket: **WE-TGFG**

- Thermal Conductivity (X-Y Plane): 400 (W/m·K)
- Natural Graphite wrapped around foam core
- Silicone free alternative to traditional gap fillers
- Can be used for 1.5mm to 25mm gaps

More Freedom of Creativity

- Raspberry Pi running stress test program
- Built in thermal throttling

Baseline test of thermal throttling and temperature profile

No TIMs

20% Thermal Throttling Max CPU Temp: 85°C

Thermal gap filler (WE-TGF): 5mm @ 3 W/m*K

Graphite Gasket (WE-TGFG): 5mm @ 400 W/m*K

Hybrid Solutions: **WE-TGFG**

- Height/Profile constraints can make difficult the use of a traditional gap filler
- WE-TGFG has customizable shape and height profile

CONTACT RESISTANCE

- 1D calculations give idealized models of thermal resistance
- Experimental tests have additional variables that are hard to calculate

REDUCING CONTACT RESISTANCE

- Interface materials fill microscopic gaps between surfaces
- Thermal greases common for reducing contact resistance

Phase Changing Material: **WE-PCM**

- Comparable to thermal pastes and greases
- Reduces contact resistance
- Phase change temperature: 50-60°C
- Thermal Conductivity = 1.6 − 5 (W/m·K)

Seamless Thermal Interface

Alternative to Thermal Pastes

Gap Filling Solutions: **WE-PCM**

- Thermal pastes and greases can be difficult to handle:
 - Special storage conditions
 - Liquids in production lines can be a hassle
- WE-PCM can be pre-applied on cooling assemblies for ease of use
- More pumpout resistance
- Need replaced less often than thermal grease

Gap Filling Solutions

- Soft compressible silicon material
- Conforms to uneven contact surfaces

MECHANICAL COMPRESSION

- Mechanical compression is required
- Second tightening required for WE-PCM after phase change
- For gap fillers 10-30% compression (10-30 psi) is recommended
- Heatsinks usually have fastening devices integrated
- What if they don't?

Photo by Own work CC BY

Thermal Transfer Tape: **WE-TTT**

- Strong Adhesive Strength: 5.8 N/cm 3.3 lbs/in
- Thermal conductivity = 1 W/m*K
- Electrically insulating (4 KV/mm)
- 25m roll with a width of 8 or 50mm
- Custom shapes available

Gap Filling Solutions: **WE-TTT**

• When mechanical fixation of the cooling assembly with screws or clips is not possible

HEAT DISSIPATION

- Convection and Radiation is how heat is dissipated
- Emissivity (ε) and Convection Coefficient (h) can be modified to increase heat dissipation
- Emissivity = Material properties, Surface finish, Color (Usually hard to change)
- Convection Coefficient = Fluid properties, Flow rate
- **Surface area** (*A_s*) is driving factor for dissipation

Radiation

$$Q=\sigma\varepsilon A_s(T_s^4-T_\infty^4)$$

Convection

$$Q = hA_s(T_s - T_\infty)$$

IMPORTANCE OF SURFACE AREA

- Heat can be dissipated from enclosure
- Compact devices need to maximize heat dissipation
- Plastic enclosures can localize heat
- We want to increase working surface area

Thermal Graphite Sheet: **WE-TGS**

- Used to maximize working surface area
- Synthetic Graphite between acrylic layers
- Thermal Conductivity (X-Y Plane): 1800 W/m·K
- Can be combined with other solutions for further enhancement

Heat Spreading Solution Graphite Sheet (E 🙆 🥘

MAXIMIZING SURFACE AREA

- Decreases the heat gradient across surface
- Efficient lateral transfer of heat
- Can be bend around corners and ridges
- Creasing can create bottlenecks

Heat Spreader to enhance *Heat Spreading*

Scenario 1 (No heat spreader)

ERAMIC PLATE

WE-TGS

HEAT SOURCE

Scenario 2 (WE-TGS heat spreader)

*Both images have been scaled as follows: 120°C (max), 20°C (min)

Heat Spreader to enhance *Heat Spreading*

- Gradient significantly reduced with heat spreader
- Larger surface area = More heat dissipation
- Actual transfer rate value would require simulation

Surface Temperature (°C)

20

0

0

Surface Temperature vs Distance

250

Discance From Center (mm)

500

ΔT

34°C

COMBINING THERMAL SOLUTIONS

CUSTOMIZATION SERVICE

Tailored to the customer's needs

- We can customize all materials
 - Dimensions
 - Additional layers (adhesive, electrical insulation...)
 - Profile (WE-TGFG)
 - Easier for a drop in solution for production

THERMAL MANAGEMENT SAMPLE KITS

