

USB 3.1 C Technical Analysis and Design Tips

Date 26.10.2017 | Technical Academy | Public | USB 3.1 C

Table of Content

- Why Type USB 3.1 & Type C
- History of USB and Evolution
- Electrical Performance
- Mechanical Performance
- RF Behaviour
- Conclusion

Date 26.10.2017 | Technical Academy | Public | USB 3.1 C

Why Type USB 3.1 & Type C Market trends for USB (3.1)

Telecommunications & entertainment

Smartphones:

shows the market share of Apple of global tablet shipments from the first quarter of 2012 to the second 2015. In the fourth quarter of 2013 Apple's market share was at 33.2 p

In Q2 2015, Apple has "only" 24,5% of market share with Iphone with their lightning connector.

Moreover, market will constantly grow: + 34% users from 2015 to 2018

\triangleright	Laptops:	399	kk	units	(+ 2	2 %)

Tablets: 782 kk units (+22 %)

Computers: 250 kk units (-5%)

minorio						
	2013	2014	2015	2016	2017	2018
1. China*	436.1	519.7	574.2	624.7	672.1	704.1
2. US**	143.9	165.3	184.2	198.5	211.5	220.0
3. India	76.0	123.3	167.9	204.1	243.8	279.2
4. Japan	40.5	50.8	57.4	61.2	63.9	65.5
5. Russia	35.8	49.0	58.2	65.1	71.9	76.4
6. Brazil	27.1	38.8	48.6	58.5	66.6	71.9
7. Indonesia	27.4	38.3	52.2	69.4	86.6	103.0
8. Germany	29.6	36.4	44.5	50.8	56.1	59.2
9. UK**	33.2	36.4	39.4	42.4	44.9	46.4
10. South Korea	29.3	32.8	33.9	34.5	35.1	35.6
11. Mexico	22.9	28.7	34.2	39.4	44.7	49.9
12. France	21.0	26.7	32.9	37.8	41.5	43.7
13. Italy	19.5	24.1	28.6	32.2	33.7	37.0
14. Turkey	15.3	22.6	27.8	32.4	37.2	40.3
15. Spain	18.9	22.0	25.0	26.9	28.4	29.
16. Philippines	14.8	20.0	24.8	29.7	34.8	39.4
17. Nigeria	15.9	19.5	23.1	26.8	30.5	34.0
18. Canada	15.2	17.8	20.0	21.7	23.0	23.9
19. Thailand	14.4	17.5	20.4	22.8	25.0	26.8
20. Vietnam	12.4	16.6	20.7	24.6	28.6	32.0
21. Egypt	12.6	15.5	18.2	21.0	23.6	25.4
22. Colombia	11.7	14.4	16.3	18.2	19.7	20.9
23. Australia	11.4	13.2	13.8	14.3	14.7	15.1
24. Poland	9.4	12.7	15.4	17.4	19.4	20.8
25. Argentina	8.8	10.8	12.6	14.1	15.6	17.0
Worldwide***	1.311.2	1.639.0	1.914.6	2,155.0	2,380.2	2.561 8

martphone(s) at least once per month; *excludes Hong Kong; **forecast from Aug 2014; ***includes countries not listed ource: eMarketer, Dec 2014

182905

www.eMarketer.co

Sources: http://www.emarketer.com & http://www.statista.com

Date 26.10.2017 | Technical Academy | Public | USB 3.1 C

Why Type USB 3.1 & Type C Market trends for USB (3.1)

Storage / USB Sticks:

- Annual shipment of USB sticks could reach 556 kk units in 2020
- US Biggest market
- +8% growth is expected for Asia / Pacific area

Power supply:

USB connectors are more and more often used as power suppliers:

- Customers are asking for high current connectors (1.8A / 2.1A & 3A)

- Smartphones, tablets, navigation systems are always requesting more & more power and need to be charged faster

Survey on 90 WE customers in America:

USB 3.1 Type C fits with customers' expectations with:

- Higher durability
- Higher data rate
- Higher current capability (Power supply)
- Reversibility feature
- Short Type (for integrated applications)

Sources: <u>http://www.strategyr.com</u>

Date 26.10.2017 | Technical Academy | Public | USB 3.1 C

A little bit of history – USB Versions?

USB = Universal Serial Bus

Date 26.10.2017 | Technical Academy | Public | USB 3.1 C

USB Overview - USB Versions

Date 26.10.2017 | Technical Academy | Public | USB 3.1 C

A little bit of history – From 2.0...

Year/Version USB 2.0 – 2000

Data rate
Power
480 Mbps
500mA / 5V

Date 26.10.2017 | Technical Academy | Public | USB 3.1 C

USB 2.0 Overview – Mini & Micro Types

- 5 contacts on Mini and Micro types \succ
- 4 contacts on "Standard" types

Mini-AB

Mini-A

Mini-B

Contact No.	Signal Name	Description		
1	VBUS	Power		
2	Data-	LISP 2.0 Twisted pair		
3	Data+	USB 2.0 Twisted pair		
4	GND	Ground for power return		
Shell	Shield			

Contact No.	Signal Name	Description		
1	VBUS	Power		
2	Data-			
3	Data+	USB 2.0 Twisted pair		
4	ID	OTG identification		
5	GND	Ground for power return		
Shell	Shield			
	54321 _п	<u>54321</u>		
	⊕⊕⊕⊕₽			

Micro-A

Micro-B

Cable A to Micro/Mini: loose of 1 wire – information >

USB 3.1 C Date 26.10.2017 | Technical Academy | Public

A little bit of history – ...to USB 3.0 ...

Year/Version USB 2.0 – 2000 USB 3.0 – 2008

Date 26.10.2017 | Technical Academy | Public | USB 3.1 C

Power

Data rate

500mA / 5V

USB 3.0 Overview - History / Benchmark

Based on Microsoft tests: (showed at WinHEC 2008 on Nov 6)

Transfer of a 25GB Blu-ray movie:

USB 1.1: <u>9.3 hours</u> ← **≈ x 40** USB 2.0: <u>13.9 minutes</u> ← **≈ x 12** USB 3.0: <u>70 seconds</u>

USB version	Data rate
USB 1.0	1,5 Mbps
USB 1.1	12 Mbps
USB 2.0	480 Mbps
USB 3.0	5 Gbps

USB 3.0 Overview - Architecture and protocol

Note: Tx & Rx are defined from the host perspective

Date 26.10.2017 | Technical Academy | Public | USB 3.1 C

With up to 150 mA per unit (+50 % compared to USB 2.0) and up to 6 units together, USB 3.0 can carry up to:

900 mA * 5V = 4,5W = $P_{SS ACTIVE}$ Vs. 500 mA * 5V = 2,5W = $P_{HS ACTIVE}$

This means a total 80% increase compared to USB 2.0.

USB 3.0 Overview – Power Management

$$P_{TOTAL2} = PI_{DLE} + (P_{ACTIVE} - PI_{DLE}) * \alpha$$

$$P_{TOTAL2} = PI_{DLE} + (P_{HS_ACTIVE} - PIDLE) * \alpha_{2.0}$$

$$P_{DLE} : system power when no data transfer is taking place PriseActive : system power in High Speed (2.0) mode PriseActive : system power in Super Speed (3.0) mode$$

Year/Version USB 2.0 – 2000 USB 3.0 – 2008 USB 3.1 – 2013

> Mini

С

Date 26 10 2017

5000 Mbps

900mA / 5V

| Technical Academy | Public | USB 3.1 C

Data rate

© All rights reserved by Wurth Electronics, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

480 Mbps

- Contact resistance
 - V_{BUS} & GND Pins : $30m\Omega$ max
 - Other Pins: $50m\Omega$ max
 - $\Delta_{\text{CONTACT RESISTANCE}}$: 10m Ω max after mating cycles
- Insulation resistance > 100MΩ
- > Dielectric Withstanding Voltage > $100M\Omega$
- Contact Current & Voltage rating:

Туре	А		В		Micro B		C		
	Power Pins	Other Pins	Power Pins	Other Pins	Power Pins	Other Pins	Power Pins		Other Pins
Pin Number	1 & 4	-	1 & 4	-	1 & 5	-	A1,A4,A9 & A12 B1,B4,B9 & B12 A5 & B5		-
Current	1.8 A	0.25 A	1.8 A	0.25 A	1.8 A	0.25 A	1.5 / 5 A 1.25 A		0.25 A
Voltage						5 V			

Date 26.10.2017 | Technical Academy | Public | USB 3.1 C

Specification, Requirements & Performances Mechanical

Extraction force (retention)

	Α	В	Micro B	С
Standard mating cycles	1500	1500	10000	10000
Before mating cycles	> 10 N	> 10 N	10 N < Force < 25 N	8 N < Force < 20 N
After 1000 cycles	-	-	-	6 N < Force < 20 N
At max. cycles	> 8 N	> 8 N	8 N < Force < 25 N	6 N < Force < 20 N
Speed			12.5 mm / min	

Date 26.10.2017 | Technical Academy | Public | USB 3.1 C

>

USB 3.1 Product Overview Type C Plug Design – 632 712 000 011

Date 26.10.2017 | Technical Academy | Public | USB 3.1 C

Type C Receptacles

- Order code:
 632 723 X00 011
- Product features:
 - 1. Material: LCP; black
 - 2. Rated Current: 5 A
 - 3. Rated Voltage: 5 VDC (12VDC/20VDC)
 - 4. Durability: 10 000 cycles
 - 5. Soldering: JEDEC lead free wave and reflow soldering

X	PCB Thickness	Pin length
1	1.00 mm	1.50 mm
3	1.60 mm	1.90 mm

Date 26.10.2017 | Technical Academy | Public | USB 3.1 C

Type C Receptacles – 632 723 x00 011

Type C Receptacles - 632 723 x00 011

Type C Receptacles - 632 723 x00 011

- SND : All pins (4) are connected together
- BUS: All pins (4) are connected together
- : USB 2.0 Data pair
- X : 2 transmission pairs
- X: 2 reception pairs
- CC: Configuration Channel : Detection & Power Management + HTD Management
- SBU: Side Band use : Alternate modes (other standards

Date 26.10.2017 | Technical Academy | Public | USB 3.1 C

WÜRTH I

USB 3.1 Product Overview Type C Receptacles Design – 632 723 x00 011

Date 26.10.2017 | Technical Academy | Public | USB 3.1 C

Type C Plug – 632 712 000 011

A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1
GND	RX2+	RX2-	V _{BUS}	SBU1	D+	D-	CC1	V _{BUS}	TX1-	TX1+	GND
						-				_	
GND	TX2+	TX2-	V _{BUS}	CC2			SBU2	V _{BUS}	RX1-	RX1+	GND
B1	B2	B 3	B 4	B5			B 8	B 9	B10	B11	B12
Date 26.10.2017	Technical Academ	ny Public US	SB 3.1 C								

USB 3.1 Product Overview Type C Plug Design – 632 712 000 011

Date 26.10.2017 | Technical Academy | Public | USB 3.1 C

Specification, Requirements & Performances

Date 26.10.2017 | Technical Academy | Public | USB 3.1 C

Specification, Requirements & Performances

Date 26.10.2017 | Technical Academy | Public | USB 3.1 C

Specification, Requirements & Performances **RF** behavior

Calibration board

Date 26.10.2017 | Technical Academy | Public USB 3.1 C

Specification, Requirements & Performances **RF** behavior

Polar Si8000 Controlled Impedance Quick Solver

			loleranz	Minimum	Maximum
Substrat 1 Dicke	H1	322,0000 +/-	0,0000	322,0000	322,0000
Substrat 1 Dielektrikum	Er1	4,6000 +/-	0,0000	4,6000	4,6000
Untere Leiterbreite	W1	450,0000 +/-	0,0000	450,0000	450,0000
Obere Leiterbreite	W2	420,0000 +/-	0,0000	420,0000	420,0000
Separation Massestreifen	D1	225,0000 +/-	0,0000	225,0000	225,0000
Leiterbahndicke	T1	50,0000 +/-	0,0000	50,0000	50,0000
Impedanz	Zo	50,13		0,00	0,00
Laufzeit (ps/m)	D	5725,350		0,000	0,000
Induktivität (nH/m)	L	287,010		0,000	0,000
14 1111 4 11 1	-	111011		0.000	0.000

Calibration board

The mirostrip conductor has to be like Würth Elektronik suggests.

Date 26.10.2017 | Technical Academy | Public | USB 3.1 C

Calibrationboard

The adjustment of the line:

Date 26.10.2017 | Technical Academy | Public | USB 3.1 C

Calibrationboard

The adjustment of the line:

S11 Reflection Z

Date 26.10.2017 | Technical Academy | Public | USB 3.1 C

Calibrationboard

The adjustment of the line:

This corresponds to a line impedance of approximately 53 Ω .

Date 26.10.2017 | Technical Academy | Public | USB 3.1 C

Calibrationboard

Line length: smith open = 100mm (electrical)

S11 Reflection Z

Date 26.10.2017 | Technical Academy | Public | USB 3.1 C

Calibrationboard

Line length: smith short = 99,79mm (electrical)

S11 Reflection Z

Date 26.10.2017 | Technical Academy | Public | USB 3.1 C

Calibrationboard

With an SMA plug length of 8.5mm this gives an electrical length of 91.4mm.

With a mechanical length of 51.0 mm, this results in a shortening factor of 0.558 and thus a running time of 5977ps / m (compared to 5725ps / m).

Date 26.10.2017 | Technical Academy | Public | USB 3.1 C

Calibrationboard

Insertion loss (refelction loss open / short)

Specification, Requirements & Performances *RF behavior*

Calibrationboard

Insertion loss (refelction loss open / short)

As expected, open and short show a counter-image.

The real attenuation is half the value since the wave is attenuated on the return path.

1.5 dB / m at 0.5 GHz
3 dB / m at 1 GHz
6 dB / m at 2 GHz
10.5 dB / m at 4 GHz
19 dB / m at 8 GHz

Date 26.10.2017 | Technical Academy | Public | USB 3.1 C

Specification, Requirements & Performances

Specification, Requirements & Performances *RF behavior*

Testboard

VIA preperation:

Without rest ring is important to avoid capacitive and inductive effects between the layers.

Date 26.10.2017 | Technical Academy | Public | USB 3.1 C

Date 26.10.2017 | Technical Academy | Public | USB 3.1 C

Specification, Requirements & Performances

Attenuation:

Date 26.10.2017 | Technical Academy | Public | USB 3.1 C

Specification, Requirements & Performances *RF behavior*

Attenuation D1 - D1: (S12 - S34)

Pairs of datalines are nearly simmilar!

Date 26.10.2017 | Technical Academy | Public | USB 3.1 C

Specification, Requirements & Performances

Attenuation and crosstalk:

Date 26.10.2017 | Technical Academy | Public | USB 3.1 C

Integration of measurement in LTSpice:

integrating a set of parameter

Date 26.10.2017 | Technical Academy | Public | USB 3.1 C

Integration of measurement data:

WHY ?

- For many RF-components an LT-Spice model is not available
- For nearly every RF-component S-Parameter sets are available
- You can find a s2spice-converter at LTSpice-Group <u>http://tech.groups.yahoo.com/group/LTspice/files/%20Tut/S-Parameter/S-Parameter%20to%20SPICE/</u>
- The S2spice-converter changes S-Parameter sets in <u>touchstone</u> format to LTSpice library data sets

Date 26.10.2017 | Technical Academy | Public | USB 3.1 C

Advantages of this USB 3.1 c type connector Features

Key features of this new connector:

- Higher durability
- Higher data rate
- Higher current capability (Power supply)
- Reversibility feature
- Short Type (for integrated applications)

Compatibility with different protocols:

HDMI

Thunderbolt...

Advantages of this USB 3.1 C type connector

- How to increase data rate?
 - Improve EMC performances: Shielding change
 - ➢ Protocol modification: ≈ 20% additional BandWidth (BW)
 - > 5 Gbps for Gen 1 in 8b/10b code
 - > 10 Gbps for Gen 2 in 128b/132b code
 - > Change of polynomial scrambling / encoding
 - > Decrease tolerable Jitter regarding USB 3.0 for maintaining BER at 10⁻¹²
 - > From 200ps to 100ps on all Tx-Media-Rx chain
 - Including crosstalk & ISI after equalization

Date 26.10.2017 | Technical Academy | Public | USB 3.1 C

Where to use it ? Applications for USB (3.1 C type)

- > USB Sticks
 > Adapters
 > Mouse
 > Keyboards
 - Hard drives
 - Printers
 - > Video / Camera
 - Mobile phones
 - Set-top Boxes
 - Medical equipment
 - Industrial testers

Date 26.10.2017 | Technical Academy | Public | USB 3.1 C

Where to use it ? Applications for USB (3.1 C type)

Thunderbolt[™] 3 Brings Thunderbolt to USB-C

Source: https://www.golem.de/news/ueberblick-wir-entwirren-den-kabelsalat-um-usb-typ-c-1601-118667.html

Date 26.10.2017 | Technical Academy | Public | USB 3.1 C

Conclusion Applications for USB (3.1 C type)

Date 26.10.2017 | Technical Academy | Public | USB 3.1 C

Where to use it ? Applications for USB (3.1 C type)

Where <u>NOT</u> to use it ?

Date 26.10.2017 | Technical Academy | Public | USB 3.1 C

