

MASTERING CONDUCTED EMISSIONS TESTING: PROVEN TIPS AND TRICKS TO DEBUG YOUR BOARD

Vidal Gonzalez Clark Kinnaird

- Product Definition Engineer
- Texas Instruments Automotive Systems

WURTH ELEKTRONIK MORE THAN YOU EXPECT

- What are EMC standards?
- Why EMC standards are so important and must be complied with?
- What types of EMC tests are being conducted?

WHY IS EMC IMPORTANT?

EMC TERMS AND DEFINITIONS

Conducted Emissions and Immunity

S. W. B. W. C.

רככ

CONDUCTED EMISSION

Basic Set-up

NOISE CATEGORIES

DM and CM noise path

DIFFERENTIAL MODE

COMMON MODE

NOISE CATEGORIES

DM and CM noise path

8 TITLE EXTERNAL | VIDAL GONZALEZ | 9/26/2023

MEASURING THE NOISE

DMB and CMN Splitter

MEASURING THE NOISE

Current Clamp

Common Mode Noise CMN \bigcirc DMN

Differential Mode Noise

COUPLING PATHS

DESIGN FOR EMC

CM & DM Insertion Loss

INDUCTOR

Impedance Response

Typical Impedance Characteristics:

Frequency [MHz]

CAPACITOR

Impedance Response

EMC RESULTS – CERAMIC BYPASS CAPS

17

\/

SUMMARY OF THE HIGH-FREQUENCY RESPONSE

18 TITLE EXTERNAL | VIDAL GONZALEZ | 9/26/2023

Filter Summary

Common Mode Filters

Common Mode Chokes

Y-Capacitors

Cable Ferrites

Differential Filters

PCB Ferrites

X-Capacitors

Guidelines for improving conducted emissions

Würth Electronics Conducted Emissions webinar Clark Kinnaird

Oct. 24, 2023

Texas Instruments

20

Emissions opportunity points

🦊 Texas Instruments

Effect of gate current in frequency domain

- Change the rise time of PWM edges at 20 kHz
- Reduced emissions at > 10 MHz frequencies

23

TEXAS INSTRUMENTS

Grounding techniques

• Single Point (Star ground): Effective for low frequencies ($f < 100 \ kHz$)

• Multipoint ground: Effective for high frequencies (f > 1 MHz)

Hybrid ground: Effective for both low and high frequencies

Local GND vs Remote GND results

Remote GND

Minimizing ground loops

• Ground loops can be a problem in lower frequency ($f < 100 \, kHz$)

 V_g is caused by voltage potential difference between two circuits or induced by external magnetic field.

 V_n is noise voltage that can interfere with the useful signal

- Methods for minimizing impact of ground loops:
 - Use single-ended or hybrid ground systems
 - Minimize ground impedance and loop area
 - Add inductance in the GND path with a common-mode choke to attenuate HF

Attenuation of LF ($f < 10 \ kHz$) and very HF ($f > 1 \ GHz$) due to the relative low inductance and stray capacitance

Minimize di/dt and dv/dt loops

2 Layers; Stack: LY1: Signal; LY2: Signal

Green Loop: Current path at ON duty Blue Loop: Current path at OFF duty Orange Loop: The area where two loops don't overlap = High di/dt loop

Inductance causes ringing, spikes, generation of EMI $L \propto Loop$ Area

4 Layers; Stack: LY1: Signal; LY2: GND; LY3: Power; LY4: Signal

Minimize Gate Drive Loop

TEXAS INSTRUMENTS

Minimize Gate Drive Loop

Minimize Switching Node Area

Switch node: dV from 0V to VBAT

- \rightarrow Causing capacitive noise coupling
- \rightarrow Generating EMC as an antenna

Minimize the switching node as much as possible

Minimize Switching Node Area

Not Optimized

Better

31

PCB Layer Stack

• PCB should have 4 layers with the following stack up:

- The GND layer should be continuous without any gaps
- The GND layer minimizes the overall impedance of the GND return path as well as minimizing the ground return loops.
- Induced eddy currents in the GND layer helps to cancel out magnetic fields generated from the top layer

PCB Layer Stack

Not Optimized

Better

Separate Input & Output Connector

Not Optimized

Separate the power supply input and output to motor to minimize the noise coupling

34

Better

EMC results – Layout comparison

PCB Version 1

TEXAS INSTRUMENTS

35

Date: 24.MAR.2021 14:21:35

PCB Version 2

EMC results – differential mode input filter

36

k/E

<u>CONDUCTED EMISSIONS DEBUGGING</u> <u>TECHNIQUES</u>

WURTH ELEKTRONIK MORE THAN YOU EXPECT

BOARD ALL FILTERS

Date: 6.0CT.2023 12:45:51

NO COMMON MODE CHOKE

Twisted cables

Date: 6.0CT.2023 10:49:22

NO COMMON MODE CHOKE

Untwisted cables

Date: 6.0CT.2023 10:27:15

COMMON MODE NOISE MEASUREMT

Current Clamp

Date: 6.0CT.2023 10:59:40

DIFFERENTIAL MODE NOISE MEASUREMENT

Current Clapm

Spectrum	Receiver	×					
RBW	(QPK) 120 kHz 10 dB	MT 100 ms	Sten TD Scan				,
Scan 01Pk Clrw	20P Clrwo3CA	Clrw	otop ib ocan				AC CPL
Limit Check Line EN 5502		HZ PASS VOLTA PASS		10 MHz			
Line EN 5502	5 ΑυτοΜοτινι	VOLTA PASS					
EN 55025 Automotiv	e Voltage PK Cla	ss 5.LIN					
EN 55025 Automotiv	e Voltage QP Cla	ss 5.LIN_	-				
EN 55025 Automotiv	e Voltage AV Cla	ss 5.LIN			-		
40 UBUV							
20 dBµv							
10 dBµV	mananan	monton	Marine Marine and Ma	nd had blood you	and makes		
О авру							
Start 150.0 kHz						Ston	108.0 MHz
			Mea	isuring 🔳		1 11	0/06/2023

Date: 6.0CT.2023 11:03:33

EMC RESULTS – DIFFERENTIAL MODE INPUT FILTER

Date: 24.SEP.2020 09:31:50

Date: 7.0CT.2020 15:48:32

43

EFFECT OF GATE CURRENT IN FREQUENCY DOMAIN

- Change the rise time of PWM edges at 20 kHz
- Reduced emissions at
 > 10 MHz frequencies

DEBUGGING

tools

CUSTOMIZABLE PRODUCT SERIES

47

Copper and Aluminum Tape

Copper Tape 3003310A Aluminum Tape 3013310A

Shielding textiles Tape

Shielding textiles 33020

DIY Shielding Plate

PN 360002

Clamp-on Ferrites

Start-tec

SHIELDING UNDER MOTOR

Date: 6.0CT.2023 11:32:08

SHIELDING UNDER BOARD

No Grounded

Date: 6.0CT.2023 11:15:26

SHIELDING UNDER BOARD

No Grounded

Date: 6.0CT.2023 11:15:26

SHIELDING UNDER BOARD

Ground

Date: 6.0CT.2023 11:21:52

SHIELDING UNDER MOTOR AND BOARD

Shielding under both

Date: 15.SEP.2023 11:52:50

CABLE SHIELDED AND GROUNDED

Date: 15.SEP.2023 12:02:26

CABLE SHIELDED AND GROUNDED

Date: 15.SEP.2023 12:42:05

TAKEAWAY

- Design with EMC in mind
- Identify your dV/dT and dI/dT loops and optimize them
- Define your ground
- Control Rise- and Fall-Time
- Cable Shield Grounding
- Be in control of the noise

Reference: Design for Electromagnetic Compatibility--In a Nutshell

IT'S TIME FOR QUESTIONS!

Q&A

