

Michael Kress & Michael Matthes

WURTH ELEKTRONIK MORE THAN YOU EXPECT

AGENDA

- Development flow from the point of view of the developer / designer
 - Specification of the requirements for the assembly
 - Component selection / study of data sheets
 - Clarification of parameters with PCB manufacturer
- 2. Requirements to the PCB manufacturer
 - What is possible? What is not possible?
 - Where are the limits?
 - Recommendations from PCB manufacturer
 - Challenge impedance
 - Reliability
- 3. Implementation in design
 - Impedance modules
 - Stack-up
 - Design

Michael Kress Head of Technical Project Management

Michael Matthes Advanced Solution Center Specialist Layout and Measurement

Development flow from the developers or designer's point of view

- Specification of the requirements for the assembly
 - Creation of the specifications
- Component selection / study of the data sheets and verification of the required functions
 - Setup of schematic symbols and footprints in the component library
 - Creation of the schematic in the used EDA-tool
 - Clarification of the impedance requirements from the circuit and the components used
 - Entering the parameters in the constraint sets / rules (schematic / layout)
- Clarification of the parameters with the PCB manufacturer
 - Stack-Up
 - Material
 - Impedance Modules
 - Other parameters

Component selection and study of the data sheet

PSoC 6 MCU: CY8C63x6 CY8C63x7 Datasheet

PSoC 63 MCU with Bluetooth LE

General Description

PSoC® 6 MCU is a high-performance, ultra-low-power and secured MCU platform, purpose-built for IoT applications. The PSoC 63 with Bluetooth LE product line, based on the PSoC 6 MCU platform, is a combination of a high-performance microcontroller with low-power flash technology, digital programmable logic, high-performance analog-to-digital conversion and standard communication and timing peripherals

The PSoC 63 product line provides wireless connectivity with Bluetooth LE 5.0 compliance

Features

32-bit Dual CPU Subsystem

150-MHz Arm[®] Cortex[®]-M4F (CM4) CPU with single-cycle

multiply, floating point, and memory protection unit (MPU) ■ 100-MHz Cortex-M0+ (CM0+) CPU with single-cycle multiply

- and MPU ■ User-selectable core logic operation at either 1.1 V or 0.9 V Active CPU current slope with 1.1-V core operation
- Cortex-M4: 40 uA/MHz Cortex-M0+: 20 µA/MHz
- Active CPU current slope with 0.9-V core operation. □ Cortex-M4: 22 µA/MHz
- Cortex-M0+: 15 uA/MHz
- Two DMA controllers with 16 channels each

Memory Subsystem

1-MB application flash, 32-KB auxiliary flash (AUXflash), and 32-KB supervisory flash (SFlash); read-while-write (RWW) support. Two 8-KB flash caches, one for each CPU. 288-KB SRAM with power and data retention control

One-time-programmable (OTP) 1-Kb eFuse array

Bluetooth Low Energy Subsystem

2.4-GHz RF transceiver with 50-Ω antenna drive Digital PHY Link Layer engine supporting master and slave modes Programmable TX power: up to 4 dBm RX sensitivity: -95 dBm RSSI: 4-dB resolution 5.7-mA Tx (0 dBm) and 6.7 mA RX (2 Mbps) current with 3.3-V supply and internal SIMO Buck convert

Link Layer engine supports four connections simultaneously Supports 2 Mbps data rate

Low-Power 1.7-V to 3.6-V Operation

Six power modes for fine-grained power management Deep Sleep mode current of 7 µA with 64-KB SRAM retention On-chip Single-In Multiple Out (SIMO) DC-DC buck converter, <1 uA quiescent current Backup domain with 64 bytes of memory and real-time clock

Cypress Semiconductor Corporation Document Number: 002-18787 Rev. *Q

Flexible Clocking Options 8-MHz Internal Main Oscillator (IMO) with ±2% accuracy Ultra-low-power 32-kHz Internal Low-speed Oscillator (ILO) On-chip crystal oscillators (16 to 35 MHz, and 32 kHz) Phase-locked loop (PLL) for multiplying clock frequencies Frequency-locked loop (FLL) for multiplying IMO frequency

Integer and fractional peripheral clock dividers Quad SPI (QSPI)/Serial Memory Interface (SMIF)

Execute-In-Place (XIP) from external guad SPI Flash On-the-fly encryption and decryption ■ 4-KB cache for greater XIP performance with lower power Supports single, dual, quad, dual-quad, and octal interfaces with throughput up to 640 Mbps

Segment LCD Drive Supports up to 83 segments and up to 8 commons

Serial Communication

■ Nine run-time configurable serial communication blocks (SCBs) Eight SCBs: configurable as SPI, I²C, or UART One Deep Sleep SCB: configurable as SPI or I²C USB full-speed device interface

Audio Subsystem

Two pulse density modulation (PDM) channels and one I2S channel with time division multiplexed (TDM) mode

Timing and Pulse-Width Modulation Thirty-two timer/counter/pulse-width modulators (TCPWM) Center-aligned, edge, and pseudo-random modes Comparator-based triggering of Kill signals

Programmable Analog

■ 12-bit 1-Msps SAR ADC with differential and single-ended modes and 16-channel sequencer with result averaging Two low-power comparators available in Deep Sleep and Hibernate modes Built-in temperature sensor connected to ADC One 12-bit voltage-mode digital-to-analog converter (DAC) with

< 2-us settling time Two opamps with low-power operation modes

198 Champion Court · San Jose, CA 95134-1709 · 408-943-2600 Revised October 31, 2022

Figure 17. Separate Battery Connection to VBACKUP

■ V_{DDUSB}: the supply for the USB peripheral and the USBDP and USBDM pins. It must be 2.85 V to 3.6 V for USB operation. If USB is not used, it can be 1.7 V to 3.6 V, and the USB pins can be used as limited-capability GPIOs on I/O port 14.

Table 10 shows a summary of the I/O port supplies:

Table 10. I/O Port Supplies

Port	Supply	Alternate Supply
0	V BACKUP	V _{DDD}
1	V _{DDD}	-
5, 6, 7, 8	V _{DDIO1}	-
9, 10	V _{DDIOA}	V _{DDA}
11, 12, 13	V _{DDIO0}	-
14	V _{DDUSB}	-

CYPRESS

Setup of the component footprint

PSoC 6 MCU: CY8C63x6, CY8C63x7 Datasheet

Packaging

This product line is offered in four packages: 68-QFN, 116-BGA, 124-BGA, and 104-M-CSP.

Table 60. Package Dimensions

Spec ID#	Package	Description	Package Drawing Number
PKG_1	124-BGA	124-BGA, $9 \times 9 \times 1$ mm height with 0.65-mm pitch	001-97718
PKG_2	104-M-CSP	104-M-CSP, 3.8 \times 5 \times 0.65 mm height with 0.35-mm pitch	002-16508
PKG_4	116-BGA	116-BGA, $5.2\times6.4\times0.70$ mm height with 0.5-mm pitch	002-16574
PKG_5	68-QFN	68-QFN, 8 \times 8 \times 1 mm height with 0.4-mm pitch	001-96836

Table 61. Package Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Unit
TA	Operating ambient temperature	-	-40	25.00	85	°C
TJ	Operating junction temperature	-	-40	-	100	°C
T _{JA}	Package 0JA (124-BGA)	-	-	64.3	-	°C/watt
T _{JC}	Package 0JC (124-BGA)	-	-	37	-	°C/watt
T _{JA}	Package 0JA (116-BGA)	-	-	36.5	-	°C/watt
T _{JC}	Package θ _{JC} (116-BGA)	-	-	12	-	°C/watt
T _{JA}	Package 0 _{JA} (104-CSP)	-	-	33.7	-	°C/watt
T _{JC}	Package 0 _{JC} (104-CSP)	-	-	0.2	-	°C/watt
T _{JA}	Package 0 _{JA} (68-QFN)	-	-	21.6	-	°C/watt
T _{JC}	Package 0 _{JC} (68-QFN)	-	-	7.2	-	°C/watt

Table 62. Solder Reflow Peak Temperature

Package	Maximum Peak Temperature	Maximum Time at Peak Temperature		
124-BGA, 116-BGA, and 68-QFN	260 °C	30 seconds		
104-M-CSP	260 °C	30 seconds		

Table 63. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2

Package	MSL				
124-BGA, 116-BGA, and 68-QFN	MSL 3				
104-M-CSP	MSL 1				

SEE VEW

A JENER SPECIFICATION NO REE -NA

PSoC 6 MCU: CY8C63x6,

CY8C63x7 Datasheet

Document Number: 002-18787 Rev. *Q

Page 76 of 86

Document Number: 002-18787 Rev. *Q

Page 77 of 86

002-16508 *E

	DIMENSIONS				
SYMBOL	MIN.	NOM.	MAX.		
А	-	-	0.650		
A1	0.167	0.185	0.203		
D	3.791	3.841	3.891		
E	4.95	5.00	5.05		
D1	2.80 BSC				
E1		4.55 BSC			
MD		9			
ME		14			
Ν		104			
Øb	0.215	0.245	0.275		
eD	0.335 0.350 0.365				
еE	0.335 0.350 0.365				
SD	0.35 BSC				
SE	0.175 BSC				

Setup with standard parameters

Pitch [um]	Pad [um]	SM [um]	Reststeg [um]	uVia[um]	Pad-Pad [um]	L/S [um]
350	240	50	10	85/215	110	

• eine Leitung zwischen den Pads

Pitch [um]	Pad [um]	SM [um]	Reststeg [um]	uVia [um]	Pad-Pad [um]	L/S [um]
350	240	50	10	85/215	110	36,67

Anlage mit Standardparametern

- for complete routing including the inner rows of pins, 3 to 4 traces would have to be routed between the pads
- 15.71 µm line/space are currently not yet feasible in the printed circuit board process

Vhat are the a	
for real:	
-alization?	

F	Pitch [um]	Pad [um]	SM [um]	Reststeg [um]	uVia [um]	Pad-Pad [um]	L/S [um]
	350	240	50	10	85/215	110	15,71

inner layer layout (up to 35 µm Cu thickness)

The limits of MICROVIA.hdi

- Limit soldermask WHY?
 - min. web width = 70 μm
 - min. distance solder mask web to pad edge = 35 μm

In total: Pad edge to pad edge min.140 µm, see sketch on the right side

In the design for 0.40 mm BGA pitch this means:

maximum possible solder mask web at the narrow point:

400 µm (pitch) - 275 µm (pad) - 2x (35 µm (solder mask clearance))

= 50 µm solder mask web

Solder Mask							
Standard Advanced							
Clearance	≥ 50 µm	35 µm					
Coverage	50 μm 40 μm						
Solder mask web	≥ 70 µm –						
Via-opening	final diameter +0,25 mm						

The design recommendations from PCB manufacturer

- Design Rules for the BGA component on the outer layer
 - BGA solder pad = Ø215 μm
 - μVia-in-Pad design μViaØ typically 85 μm (dielectric 70 μm 100 μm thick)
- Design Rules soldermask for the BGA component on the outer layer
 - solder mask clearance component pad circumferential = 35 μm
 - solder mask web = 65 μm

Calculation for a BGA pitch 0,35 mm:

215 μm (component pad) + (2 x 35 μm (solder mask clearance)) + 65 μm (solder mask web)

= 350 µm ✓

Stackup from PCB manufacturer

customer	WE	- SLIM.hdi_Webinar Mai 2023				1		
pcb name								
WE-number		xyz						WURTH
engineer		M. Kress						ELEKTRONIK
date								MORE THAN
	·							YOU EXPECT
				SLIM.hdi 1-2	2b-1			
		PCB Thickness :	0,31 mm +/-0,0)5mm				
								Impedance
Rigid area	Rigid area	Material description	rigid area		Viatures	l aver usade		
Structure	Thickness	Material description	rigiù alea		Viatypes	Layer usage	Er	Z[Ohm] / Line / Space
	20	Soldermask photosensitive, flexible						
L1	30	9µm copper foil + plating	Top-Layer			S1		Zo[50] = 180 // Zdiff[100] = 90 / 75 // Zdiff[90] =
	30	Prepreg FR-4.1					2,9	
L2	25				<u></u>			
	100	Core FR-4.1					3,8	
L3	25					Ref1		
	30	Prepreg FR-4.1					2,9	
L4	30	9µm copper foil + plating	Bottom-Layer					
	20	Soldermask photosensitive, flexible						
	·							
Notes: Microvia executions	stacked and standered r	nossihle						1
Notes. Microvia executions	nachea ana staggerea p	70001010						

Challenge Impedance design

Important: Signal layer Top / Reference layer Inner2 resp. layer 3

A brief look at the reliability of the technology: qualification test results

Reflow

Temperature Test System VT7012-S2

Reflow solder test: Drying 4h 120°C // Solder test acc. JEDEC 020C Peak 260°C // 6 repetitions

TCT Shock test: -55°C / +150°C // dwell time -55°C 15 minutes // change 15 seconds // dwell time +150°C 15 minutes

Modification of parameters

- modified designrules of the PCB manufacturer
 - Pad diameter reduction
 - Reduction of the solder resist residue
 - Use of μ Via in pad
 - Use of 75 $\mu m/75\,\mu m$ lines-space

Caution!

Here you deviate from the recommended component manufacturer specifications and should carefully examine the assembly, soldering technology and subsequent processes.

Pitch [um]	Pad [um]	SM [um]	Reststeg [um]	uVia[um]	Pad-Pad [um]	L/S [um]
350	215	35	65	85/215	135	75/75

Impedance controlled traces

- The width of the head and foot of the trace are specified for the impedance calculation.
- Which value does the designer enter in the tool?
 - -> according to the IPC specification, the foot, i.e. 200 µm, is specified, since this parameter can also be checked optically

nsmission Line Field Solver - [C:\Program Files (x86)\Polar\Si9000\U	nbenannt.Si91 [C:\Program File	s (x86)\Polar\Si9000\Untitled.SIP]	Z-solver X	
guration Hilfe			Microstrip Buried Microstrip Stripline Sequentially-Laminated Stripline	Z-zero Z-planner v2023.1.281 Beta
			AIR	Solder mask () Above trace (c1): 38.1 um
+ - ୬ Surface Microstrip 1B	Substrat 1 Dicke Substrat 1 Dielektrikum Untere Leiterbreite Obere Leiterbreite	H1 100,00 + ± [Er1 4,0000 + ±] W1 200,00 + ±] W2 190,00 + ±]	h Dielectric (Dk, Df)	Between traces (c2): 38.1 um Dielectric constant: 3.30 Loss tangent: 0.0200 Dielectric Dielectric height (h): 100.0 Dielectric constant (Dk): 4.00
H1 Er1	Leiterbahndicke Impedanz	T1 35.00 ÷ ± [Zo 47,50	PLANE Signal-layer copper Copper foil weight: 112 V oz. Top width (w2): 190.0 Um Bottom width (w1): 200.0 um	Loss tangent (Df): 0.0100 2 ply:
Wit www.polarinstruments.com Hinweise: (die ersten 5 Zeilen werden gedruckt) Gehen Sie Zusatzinformationen hier ein	2 –		Coplanar distance (d): 254.0 um Auto-calculate w2:	Graph Controls () Zdiff Curve () Loss Curve
Screenshot of Polar SI9000			Screenshot of Siemens Z-Solver	

50 Ohm Single-Ended (RF-antenna feed line)

- you have to take in account if the rf-track is realized with or without solder resist
- according to that the parameters need to be tuned to the right value

Z-solver ×		Z-solver ×	
Vicrostrip Buried Microstrip Stripline Sequentially-Laminated Stripline	Z-zero Z-planner v2023.1.281 Beta	Microstrip Buried Microstrip Stripline Sequentially-Laminated Stripline	Z-zero Z-planner v2023.
AIR	Above trace (c1): 20.0 um	AIR	Above trace (c1): 2
	Between traces (c2): 40.0 um Dielectric constant: 4.30 Loss tangent: 0.0200	c1 \downarrow $c2$ k^{W2} \uparrow d \uparrow t	Between traces (c2): 40 Dielectric constant: 4. Loss tangent: 0.0
h2 Prepreg2 K w1 (Dk2, D h1 Prepreg1 (Dk1, D PLANE	Dielectric h2 Dk2 Df2 30.0 2.80 0.0100 100.0 3.80 0.0100 h1 Dk1 Df1	h2 Prepreg2 W1 (Dk2, Df2) h1 Prepreg1 (Dk1, Df1) PLANE	Dielectric h2 Dk2 30.0 2.80 [100.0 3.80 [h1 Dk1
Signal-layer copper Copper foil weight: 1/2 oz. Top width (w2): 196.0 Plated thickness (t): 30.0 um Bottom width (w1): 206.0 Coplanar distance (d): 100.0 um Auto-calculate w2:	2 pły: ⊻ _ um _ um ⊙	Signal-layer copper Image: Copper foil weight: 1/2 oz. Top width (w2): 196.0 um Plated thickness (t): 30.0 um Bottom width (w1): 206.0 um Image: Coplanar distance (d): 100.0 um Auto-calculate w2: Image: Coplanar distance Image: Coplanar distance<	2 ply: 🗹
Single-Ended Impedance Impedance (Zo): 53.0	Graph Controls (?) ohms III Ozdiff Curve I Loss Curve	Single-Ended Impedance Impedance (Zo): 48.1 ohms	Graph Controls
Differential Impedance Spacing (s): 254.0 um Pitch: 460.0 um	Cursor: ohms O.00 GHz Snap to Frequency () 0.00 dB/cm Snap to Total	Differential Impedance Spacing (s): 254.0 um O Impedance (Zdiff): 93.5 ohms Pitch: 460.0 um	Cursor: 0.00 GHz Snap to F 0.00 dB/cm Snap to T

50 Ohm Single-Ended (with solder resist) -> here 48,1 Ohm

50 Ohm Single-Ended (without solder resist) -> here 53,0 Ohm

Example 90 Ohm differential pairs

- For 90 Ohm lines, the track width from the calculation corresponds to approx. 135 μm and must be entered in the EDA tool.
- The etching angle (trapezoidal shape) results in 135 μm at the base, i.e. the side facing the laminate. The conductor head then has a width of approx. 125 μm.
- In order to get an etching compensation, the CAM of the circuit board manufacturer adds approx. 30 µm. Thus, 165 µm are set in the photoresist for the exposure.

diff. 90 Ohm-tracks in SI9000

Layer Stack-Up(using the example of Allegro/Orcad

		Objects	Types 🕨		Thickness ►	Physical		→	Embedded	Signal Integri		
00	#	Nama	Lavian		Value	Layer	Material		Embedded	Conductivity	Dielectric	
•0.	#	Name	Layer	Layer Function	mm	ID	wateria		Status	mho/cm	Constant	
	*	*	*	*	*	*	*		*	*	*	•
1			Surface								1	
2			Dielectric	Dielectric	0.02		Soldermask			0	4.3	0
3	1	ТОР	Conductor	Conductor	0.03	1	Copper		Not embedded	596000	1	0
4			Dielectric	Dielectric	0.03		Fr-4			0	2.9	٥
5	2	LAYER2	Conductor	Conductor	0.025	2	Copper		Not embedded	596000	1	C
6			Dielectric	Dielectric	0.1		Fr-4			0	3.8	٥
7	3	LAYER3	Conductor	Conductor	0.025	3	Copper		Not embedded	596000	1	٥
8			Dielectric	Dielectric	0.03		Fr-4			0	2.9	٥
9	4	BOTT	Conductor	Conductor	0.03	4	Copper		Not embedded	596000	1	٥
			Dielectric	Dielectric	0.02		Soldermask			0	4.3	0
			Surface								1	1

- Layer structure with material-specific parameters such as ɛr, copper and prepreg thickness taken from the specifications of the PCB manufacturer.
- Ideally, the layer structure can be downloaded in digital format from the website for the respective EDA-tool.

- Strategy of copper filled microvias
- Thanks to the copper filling technology, the vias can be designed staggered or stacked

PAD	PAD	PAD
12	15	15
2	\sim	~
0	0	0
≤	≤	≤
$\geq \sim$	2 0	≥ 4'
_ –		_ m

Demo placement of some components

BGA-component with 350 µm pitch and external components

- differential 90 Ohm impedance
- Single-Ended 50 Ohm track as antenna feed line without covering with solder resist

Layer change at differential lines

- in order to route the differential pairs from the inner area of the BGA, a layer change to layer 2 must be done
- this reduces the distance to the reference layer, which reduces the impedance

Cutout from the demo-placement

	Objects		Types		▶ Thickness ▶	Physical		► En	Embedded 🕨	Signal Integri	
low No		Name			Value	Layer		E	mbedded	Conductivity mho/cm	Dielectric Constant
ч о .	#		Layer	Layer Function	mm	ID	Material		Status		
*	*	*	*	*	*	*	*	*		*	*
1			Surface								1
2			Dielectric	Dielectric	0.02		Soldermask			0	4.3
3	1	тор	Conductor	Conductor	0.03	1	Copper	Not	embedded	596000	1
4			Dielectric	Dielectric	0.03		Fr-4			0	2.9
5	2	LAYER2	Conductor	Conductor	0.025	2	Copper	Not	embedded	596000	1
6			Dielectric	Dielectric	0.1		Fr-4			0	3.8
7	3	LAYER3	Conductor	Conductor	0.025	3	Copper	Not	embedded	596000	1
8			Dielectric	Dielectric	0.03		Fr-4			0	2.9
9	4	BOTT	Conductor	Conductor	0.03	4	Copper	Not	embedded	596000	1
			Dielectric	Dielectric	0.02		Soldermask			0	4.3
			Surface								1

Since the layer structure of the printed circuit board is symmetrical, there are two possible solutions:

- you adjust the track width and spacing to achieve the required impedance
- the bottom layer is used as the reference layer, but it must be noted that a buried microstrip structure is created and other parameters must therefore be taken into account

90 ohms differential impedance module

 To get a feeling for the impedance changes, the differential 90 ohm microstrip module is divided into a buried microstrip module with reference to layer 3 (100 µm spacing) and a buried microstrip module with reference to the bottom layer (130 µm spacing). The line-space parameters remain.

 As it can be seen from the results, the distance to the reference layer has a greater influence on the impedance than the covering height with resin/glass.

Layer stack of the demo placement

- In the illustration of the individual layers, you can see the gap on layer 2 that is required to use layer 3 as a reference
- In a further step, the area under the differential line pair on layer 2 would have to be cleared in layer 3 and a reference plane would have to be inserted on the bottom layer. The line space parameters then have to be adjusted according to the simulation results.

Demo placement

Routing unter dem BGA

- stacked micro-vias
- differential tracks on Top
- Differential trackson Layer 2

THANKS FOR YOUR ATTENTION

Fan out of a BGA Pitch 0.35 mm – This is how it works!

