

DON'T LET EMI RUIN YOUR DAY: NEW SHIELDING CHALLENGES

EMC Shielding & Thermal Solutions Team

WURTH ELEKTRONIK MORE THAN YOU EXPECT

SHIELDING BASICS

Why shield components?

3 DON'T LET EMI RUIN YOUR DAY: NEW SHIELDING CHALLENGES VIMA | AUGUST 2024

WHY SHIELDING MATERIALS?

- For the user of an electric or electronic device radiation can cause annoying effects:
 - Noise
 - Resonances
 - Errors
 - Malfunction

SHIELDING BASICS - WHERE CAN I HAVE EMI?

- Electromagnetic fields are radiated from and received by conductive structures
- Possible antennas:

Cables, interfaces, apertures

Traces, groundplanes, vias, slits

Components, heatsinks, integrated circuits

SHIELDING BASICS – SHIELDING EFFECTIVENESS

- The **Shielding Effectiveness** *SE*, given in decibel, characterises the **quality** of an electromagnetic shield
- The field amplitudes E_1 and H_1 in front of the shield are compared with the field amplitudes E_2 and H_2 behind the shield

SHIELDING BASICS – RULE OF THUMB

- In order to **maximize the field reflection** in the proximity of the noise source (near field), we need a shield
 - with high electric conductivity (= low impedance) against electric fields

with high magnetic conductivity (= high permeability) against magnetic fields

- In order to **maximize the field absorption** inside the shield, the shield should
 - Have high electric and magnetic conductivity
 - Be as thick as possible

EMC GASKETS

EMC GASKETS - WHERE DO THEY GO?

EMC GASKETS - PLACEMENT & COMPRESSION

Bad contact between surfaces

EMC GASKETS - PLACEMENT & COMPRESSION

How we can solve a bad contact?

EMC GASKETS - PLACEMENT & COMPRESSION

- Placement
 - Good
 - Have a small section of the cover to get into the enclosure, for ensuring a good electrical connection
 - Compress it 20%

- Avoid
 - Use of greases (avoiding degradation by abrasion)
 - Use of non-conductive adhesives (this will increase the Rdc of the gasket)

EMC GASKETS - REDEXPERT! (EMC GASKETS MODULE)

REDEXPERT

\mathbb{Y}	Código 🏹	Serie 🔥 🍸	Descripción 🏹	Spe	c L 🛛 🍸	W \bigtriangledown	H 🖓	Working Height Min γ	Working Height Max 🛛 🍸	Inner Diam 🍸	Outer Dia 🝸	Profile \heartsuit	Raw Material	Outside Material
	38401001	WE-EGS	Conductive Elastomer Gasket	100	1000 mm	3,96 mm	3,96 mm	3,17 mm	2,77 mm			Hollow D profile	Nickel-plated Graphite (NiC)	Silicone
	♦ 38401002	WE-EGS	Conductive Elastomer Gasket	200	1000 mm	4,75 mm	4,72 mm	3,78 mm	3,30 mm	-	-	Hollow D profile	Nickel-plated Graphite (NiC)	Silicone
	ି 38401003	WE-EGS	Conductive Elastomer Gasket	rite Filter	1000 mm	6,35 mm	6,35 mm	5,08 mm	4,45 mm		-	Hollow D profile	Nickel-plated Graphite (NiC)	Silicone
	38401004	WE-EGS	Conductive Elastomer Gasket		1000 mm	7,92 mm	7,92 mm	6,34 mm	5,54 mm		-	Hollow D profile	Nickel-plated Graphite (NiC)	Silicone
	38401005	WE-EGS	Conductive Elastomer Gasket	1	1000 mm	7,92 mm	7,92 mm	6,34 mm	5,54 mm	-	-	Hollow D profile	Nickel-plated Graphite (NiC)	Silicone
	\$38401006	WE-EGS	Conductive Elastomer Gasket	200	1000 mm	12,4 mm	8,23 mm	6,58 mm	5,76 mm	-	-	Hollow D profile	Nickel-plated Graphite (NiC)	Silicone
	\$38401101	WE-EGS	Conductive Elastomer Gasket	100	1000 mm	1,40 mm	1,63 mm	1,30 mm	1,14 mm			D profile	Nickel-plated Graphite (NiC)	Silicone
~	♦ 38401102	WE-EGS	Conductive Elastomer Gasket		1000 mm	1,57 mm	1,73 mm	1,38 mm	1,21 mm	-	-	D profile	Nickel-plated Graphite (NiC)	Silicone

Haga clic y escriba o suelte un Código aquí

≡ MÁS

EMC GASKETS - MATERIAL MATCHING

Galvanic Corrosion

Cathodic (noble) Platinum ← Similar Gold + Graphite + Titanium Silver Dissimilar Nickel large Carbon electrical Bronze potential Copper Brass Tin + Similar Lead -**Cast Iron** Steel Cadmium Aluminum Zinc+ Magnesium

Anodic (base)

EMC GASKETS - TYPES

- Types of EMC Gaskets
 - Conductive Elastomer Gaskets → Conductive filler mixed with rubber material
 - Conductive Fabric over Foam Gasket → Conductive textile wrapped over a PU sponge core
 - Contact Stripe Gasket → Made of elastic metallic material
 - Knitted wire mesh gaskets → Composed mainly by a metallic wire mesh

EMC GASKETS – CHEATSHEET

How we can choose the proper EMC gasket?

EMC TAPES

HOUSING PROBLEMS-APERTURES

EMC TAPES

- How we can choose the proper EMC Tape?
- 1. Material
 - It must take into account the material of the contact surface in order to avoid corrosion

EMC TAPES TIPS

- The conductive glue is not fully conductive.
- There are conductive bubbles in the glue, which must be connected between the conductive part of the tape and the conductive surface, where it is glued to, by hard pressing.

SHIELDING THE CABLES

SHIELDING CABLES PROBLEMS

- Bad shielded cables
 - Pigtails
 - NOT full connection
 - Inductive coupling in pigtail loop

SHIELDING CABLES PROBLEMS

How we can shield a cable properly?

Conductive nylon weave + Metal clips

EMC Shielding Textile

SHIELDING CABLES TIPS

• Shield connected on 360° to the cable

Don't use any type of painting on the connection metal clip - ground plane

BOARD LEVEL SHIELDING

BLS - PCB SHIELDING

How we can solve these intra/inter decoupling?

BLS - WHAT THERE IS?

What there is on the market?

BLS - PLACEMENT

- How we can choose the proper SMT Grounding contact?
- 1. Direction from the contact point
 - Horizontal
 - Vertical

- 2. Recommended working height
 - Rule of thumb: Removing 20%-30% from the original height
 - Obtain the proper Rdc without material wear

BLS - MATERIALS

- How we can choose the proper SMT Grounding contact?
- 3. Galvanic corrosion
 - Plating: Gold (most used due to is a noble material), Nickel and Tin
 - Solderability: The material selection will affect solderability!

Ground Material: Phosphor Bronze

BLS- REDEXPERT! (GROUNDING CONTACTS MODULE)

REDEXPERT

Y	Código	7	Serie 🛛 🍸	Descripción 🍸	Spec	¥	L \heartsuit	W V	H 🖓	Working Height Min γ	Working Height Max 🍸	Material 🛛	Plating 🛛	Automotriz	Y
	331041402053		WE-SECF	SMT Contact Spring / Finger	107	¥	4,10 mm	2,00 mm	5,30 mm	5,00 mm	4,40 mm	Copper Beryllium	Gold plated	~	
	331051472057		WE-SECF	SMT Contact Spring / Finger	199	¥	4,70 mm	2,00 mm	5,70 mm	5,40 mm	4,60 mm	Copper Beryllium	Gold plated	~	
~	331061603010		WE-SECF	SMT Contact Spring / Finger	107	¥	6,00 mm	3,00 mm	10,0 mm	9,70 mm	8,30 mm	Copper Beryllium	Gold plated	~	
	331081302025		WE-SECF	SMT Contact Spring / Finger	1	¥	3,00 mm	2,00 mm	2,50 mm	2,20 mm	2,00 mm	Copper Beryllium	Gold plated	~	
~	331141352540		WE-SECF	SMT Contact Spring / Finger	107	¥	3,50 mm	2,50 mm	4,00 mm	3,70 mm	3,40 mm	Copper Beryllium	Gold plated	~	
	ି <mark>331151702562</mark>		WE-SECF	SMT Contact Spring / Finger	por	¥	7,15 mm	2,50 mm	6,20 mm	5,90 mm	5,00 mm	Copper Beryllium	Gold plated	 	
	331161452070		WE-SECF	SMT Contact Spring / Finger	1	¥	4,50 mm	2,00 mm	7,00 mm	6,70 mm	6,00 mm	Copper Beryllium	Gold plated	~	
~	331161702513		WE-SECF	SMT Contact Spring / Finger	1	¥	7,00 mm	2,50 mm	13,0 mm	12,5 mm	10,0 mm	Copper Beryllium	Gold plated	~	

Haga clic y escriba o suelte un Código aquí t≊ AÑADIR ≡ MÁS

Imagen Dimensiones Huella Deflection diagram RDC RDC Diagram Diseño de Huella Recomendado 3 N 1,8 Ω C) 1,6 Ω 4,7 ref. 2,5 N 1,4 Ω 8,5 7,0 ±0,2 4,4 1,2 Ω 2 N 1,95 1Ω 6,2 ±0,2 RDC 1,5 N 800 mΩ 2,5 3,5 600 mΩ 1 N 400 mΩ Soldering Area 0,5 N 200 mΩ Reserved PCB Area 0Ω or 20 pr 40 pr 60 pr 60 pr 40 pr 1 pr 1 2 pr 1 A pr 0 N 0 m 200 µm 400 µm 600 µm 800 µm 1 mm 1,2 mm 1,4 mm Compression Compression

BLS - WHY ARE THEY NEEDED FOR?

• The Shielding cabinets protect sensitive areas of the PCB, and reduce the radiation or coupling of electromangetic fields acting as a Faraday cage.

BLS - TYPES

How we can choose the proper Shielding cabinet

Structure

■ Standard Shielding cabinets → Produced by a generic stamp and bending (they have small openings on the corners)

Standard / Traditional solutions (low frequency)

BLS - HIGH FREQUENCY

Structure

 Seamless cabinets → Production method for these parts is Deep drawing, meaning that there are no openings on edges or sides (increasing the Shielding Effectiveness)

BLS - HIGH FREQUENCY

• Frequency measurement: 8 GHz

BLS - HUMIDITY ENVIROMENTS

- Humidity Resistance needed?
 - If it is needed, Nickel-Silver material is the key!

Nickel-Silver

BLS - STANDARD DIMENSIONS!

260 + Standard Sizes

- Prototyping
 - Shielding cabinet clips → These clips make One piece type and prototyping solutions (DIY Shielding) pluggable
 - DIY Shielding→ Pre carved metallic sheets (Nickel-Silver usually) than can be cut and folded. Perfect to test several solutions

Shielding cabinet clips

MAGNETIC ABSORBERS

BASIC SHIELDING CONCEPTS

PERMEABILITY

- Any magnetic material has the capability of influencing any magnetic field that surrounds it
 - Relative Permeability µ_r

$$u_r = \frac{B}{B_0} = \frac{\mu}{\mu_0}$$

- These materials are more susceptible to a magnetic field than the air surrounding them.
 - Magnetic fields will be more concentrated within them

BASIC SHIELDING CONCEPTS

PERMEABILITY

• When μ_r is expressed in its complex form:

- Depending on the application needs a material can be in a particular set of frequencies:
 - Reflective: concentrate magnetic field
 - Absorber: collect magnetic field and transform it to heat energy

BASIC SHIELDING CONCEPTS

PERMEABILITY

• WE-FAS reflection & absorption

MAGNETIC ABSORBERS - WHAT THERE IS ON THE MARKET?

• **Flexible Absorber**: This composite material is formed by a polymer filled with ferrite powder. It offers high flexibility, but their magnetic properties are reduced because of the polymer

 Flexible Sintered Ferrite Sheets: They are composed by pre-cracked thin ferrite plates and are the best option for magnetic flux management due to its high permeability at low frequencies

MAGNETIC ABSORBERS - INTERDECOUPLING VS INTRADECOUPLING

Intradecoupling

Interdecoupling

MAGNETIC ABSORBERS - NFC/RFID & WIRELESS POWER APPLICATIONS

MAGNETIC ABSORBERS - NFC/RFID & WIRELESS POWER APPLICATIONS

How we can solve a NFC/RFID problem?

MAGNETIC ABSORBERS – FREQUENCY RANGE

- How we can choose the proper Magnetic Absorber?
- One of the most important parameter that describes the material's ability to absorb electromagnetic noise is the permeability (μ).

MAGNETIC ABSORBERS – THERMAL MANAGEMENT

MAGNETIC ABSORBERS – REDEXPERT! (MAGNETIC SHIELDING) REDEXPERT

∇	Código 🏹	Serie	T	Spec	L \heartsuit	W \bigtriangledown	Thick \bigtriangledown	Surface Resistance $\ensuremath{\bigtriangledown}$	Peel 🍸	Ther 🍸	µ'@ 🍸	μ'@ 🍸	µ" @ 🍸	µ" @ 🍸	Adhe 🍸	$T_{min} ~ \bigtriangledown$	T _{max} \bigtriangledown	Flamabi 🍸	
~	♦ 371100	WE-EN	IIP	207	15000 mm	50,0 mm	0,07200	1,00e+7 Ω/cm2	400 N/cm		87,6	100	9,72	0,0100	0,0100 mm	-25,0 °C	105 °C	No	
	0 371101	WE-EN	IIP	107	105,00 mm	74,0 mm	0,07200	1,00e+7 Ω/cm2	400 N/cm		87,6	100	9,72	0,0100	0,0100 mm	-25,0 °C	105 °C	No	
	◇ 371102	WE-EN	IIP	æ	297,00 mm	210 mm	0,07200	1,00e+7 Ω/cm2	400 N/cm		87,6	100	9,72	0,0100	0,0100 mm	-25,0 °C	105 °C	No	
	♦ 31401	WE-FA	S RFID	207	297,00 mm	210 mm	0,1000 mm	1,00e+8 Ω/cm2	400 N/cm		25,0	25,5	1,00	0,0100	0,0300 mm	-20,0 °C	90,0 °C	Yes	
	♦ 31402	WE-FA	S RFID	107	297,00 mm	210 mm	0,2000 mm	1,00e+8 Ω/cm2	400 N/cm		25,0	25,5	1,00	0,0100	0,0300 mm	-20,0 °C	90,0 °C	Yes	
	♦ 31403	WE-FA	S RFID	107	297,00 mm	210 mm	0,3000 mm	1,00e+8 Ω/cm2	400 N/cm		25,0	25,5	1,00	0,0100	0,0300 mm	-20,0 °C	90,0 °C	Yes	
	ି <mark>33401</mark>	WE-FA	S RFID	109	297,00 mm	210 mm	0,1000 mm	1,00e+5 Ω/cm2	400 N/cm		55,0	51,2	1,00	0,0100	0,0300 mm	-20,0 °C	90,0 °C	Yes	
	♦ 33402	WE-FA	S RFID	æ	297,00 mm	210 mm	0,2000 mm	1,00e+5 Ω/cm2	400 N/cm		55,0	51,2	1,00	0,0100	0,0300 mm	-20,0 °C	90,0 °C	Yes	

Haga clic y escriba o suelte un Código aquí

Mostrar Panel Permeability µ" Shielding Effectiveness H field Shielding Effectiveness E field neability µ' = 🗖 Permeability µ" Shielding Effectiveness H field Shielding Effectiveness E field 18 dB 25 dB 16 dB 14 50 20 dB 14 dB 12 12 dB 40 10 Ъ. 15 dB ٦. ≧ bility 10 dB 30 8 8 dB Ate 10 dB ď ď. 20 6 dB 4 dB 5 dB 10 2 dB 0 dB 0 dB 100 1000 0.1 10 100 1000 0Hz 1 GHz 2 GHz 3 GHz 4 GHz 5 GHz 6 GHz 7 GHz 8 GHz 9 GHz 0Hz 1 GHz 2 GHz 3 GHz 4 GHz 5 GHz 6 GHz 7 GHz 8 GHz 9 GHz 0.1 10 1 1 Frecuencia Frecuencia Frecuencia Frecuencia

≡ MÁS

MAGNETIC ABSORBERS – WE-EMI PATCH

Isolated Conductive layer

MAGNETIC ABSORBERS – WE-EMI PATCH

- The EMI Patch[™] is the band-aid for EMI.
- Perfectly adaptable solution for testing, EMC Labs and also final production.
- Its application versatility and wide frequency effectivity make it a great product for the racks and labs.
- WE-FAS with metal layer included for better shielding effect in both high and low frequencies.
- Flexible and thin (0.1 mm).
- Easy placing, adhesive tape available as standard.
- Standard sizes on roll and sheet.
- Customizable: dimensions, thickness, layers order, permeability, metal layer,...
- A7 74x105 mm
- 210 x 300 mm
- Roll 50 mm x 15m

Isolated Conductive layer

MAGNETIC ABSORBERS – WE-EMI PATCH

MAGNETIC ABSORBERS – WE-EMI PATCH

Flexible Electromagnetic Absorber Sheets Combined with a Metal Layer

by 😵 Jorge Victoria ^{1,2} ⁽²⁾, (1) Adrian Suarez ^{1,2} ⁽²⁾ ⁽²⁾, (2) Jose Torres ¹, (2) Pedro A. Martinez ¹, (2) Antonio Alcarria ^{1,2}, (2) Julio Martos ¹ ⁽²⁾, (2) Adrian Suarez ^{1,2}, (2) Julio Martos ¹ ⁽²⁾, (2) Adrian Suarez ^{1,2}, (2) Julio Martos ¹ ⁽²⁾, (2) Adrian Suarez ^{1,2}, (2) Julio Martos ¹ ⁽²⁾, (2) Adrian Suarez ^{1,2}, (2) Julio Martos ¹ ⁽²⁾, (2) Adrian Suarez ^{1,2}, (2) Julio Martos ¹ ⁽²⁾, (2) Adrian Suarez ^{1,2}, (2) Julio Martos ¹ ⁽²⁾, (2) Adrian Suarez ^{1,2}, (2) Julio Martos ¹ ⁽²⁾, (2) Julio Martos ¹ ⁽²⁾, (2) Julio Martos ¹ ⁽²⁾, (2) Julio Martos ¹, (2) Julio Mart

WE-FAS vs WE-EMIP

WE-FAS vs WE-SHC Seamless

THANK YOU FOR YOUR

k/F