

Compendium about Common Mode Chokes

Special features and differences explained using practical examples

REQUIREMENTS IN EMC

EMC approval marks

Federal Communications Commission

 Voluntary Control Council for Interference

 Australian Communications and Media Authority

CE Marking

- With the formation of the single European market, standardization was required to remove technical barriers to trade.
- New Approach Directives were introduced to remove these barriers to trade
- 20 regulations and directives:

LVD - Low Voltage Directive 2014/35/EU EMC - Electromagnetic Compatibility 2014/30/EU

> R.E.D. - Radio Equipped Directive 2014/53/EU MD - Machinery Directive 2014/90/EU

Design phase for EMC

- Economical point of view:
 - \rightarrow Depends on you when will start to design EMC conform

Core materials - Chokes (filtering)

Noise frequency range must be known

Core Losses

Electro Magnetic energy cannot disappear, it will be just transformed into other energy form \rightarrow energy conservation law

e.g. electrical energy transformed into \rightarrow thermal energy

The core losses from ferrite transform the noise energy into heat

The magnetic field – Field Model

Common Mode Choke – How it works

It is a Bi-directional filter

- From device to outside environment
- From outside environment to inside device

Intended Signal - Differential mode

Interference Signal (noise) – Common Mode

Conclusion:

- "almost" no affect the signal Differential mode
- high attenuation to the interference signal (noise) Common Mode

more than you expect

10

Common Mode Filter – Signal theories

The Differential mode-Impedance attenuate also the signal

²⁰¹⁹ V.1.0 | Lorandt Fölkel | Public / Confidential | Webinar 2019

Common Mode Choke

Best solution to filter noise close to signal frequency

2019 V.1.0 | Lorandt Fölkel | **Public** / Confidential | Webinar 2019

sectional

13

Common mode choke - Construction

- Less differential impedance
- High capacitive coupling
- Less leakage inductance
- Data lines
- Sensor line
- USB
- HDMI
- CAN bus

High leakage inductance

- Power supply input /output filter
- \rightarrow CMC for main power lines (AC line)
- High voltage application (up to 400V)
- Switching power supply decoupling

2019 V.1.0 | Lorandt Fölkel | Public / Confidential | Webinar 2019

Common mode chokes - Winding example

WE-SL2 744227 bifilar winding

WE-SL2 744227S sectional winding

Snap on ferrite - Construction

- Snap on ferrite acts as an CMC
- Absorbs common mode Interferences
- Comparable with bifilar winding CMC

Decoupling common mode noise

- For common mode rejection use common mode chokes
- For supplying power over long distance common mode chokes are recommended
- Additional capacitor reduce differential mode noise
 - Small value for ceramic capacitor is recommended
 - > Capacitor and common mode choke act as a LC filter for differential mode noise
- Can be used for input and output lines

Radiated Emissions made by AC/DC Converter Use Input Filter & Y-Cap

Radiated Emissions made by AC/DC Converter with Input Filter & Y-Cap

²⁰¹⁹ V.1.0 | Lorandt Fölkel | Public / Confidential | Webinar 2019

Conducted Emissions made by AC/DC Converter without Input Filter with Y-Cap

Conducted Emissions made by AC/DC Converter with Input Filter & Y-Cap

Example AC/DC converter

Pegel [dBµV] 100 80 60 40 20 **EMC-Test Failed** n 300k 500k 1M 2M ЗM 5M 7M 10M 30M 150k Frequenz [Hz]

- Without common mode choke
- With adjusted Snubber
- Without adjusted Y-Cap

QPeak

Peak

Avg.

Avg.

Example AC/DC converter

Pegel [dBµV]

- With common mode choke
- With adjusted Snubber
- Without adjusted Y-Cap

QPeak

Avg. Peak

Avg.

Example AC/DC converter

Pegel [dBµV]

- With common mode choke
- With adjusted Snubber
- With adjusted Y-Cap

QPeak

Avg. Peak

Avg.

Example AC/DC converter

- Noise couples through the transformer via C_{ww}
 - Noise seeks path to primary circuit
 - Without path, noise may become conducted emissions
- Y-Cap across transformer reduces noise
 - Tune the capacitor for optimum loss vs. noise reduction
 - Capacitor usually in the 470pF to 4.7nF range
 - Y-Caps to transformer terminals not on switch nor on diode
 - Close to transformer as possible

Common mode choke – Advantages

Filter with two inductors

Filter with CMC

- Signal not affected
- Noise attenuated even close to the signal frequency

Common mode choke – Application USB

© All rights reserved by Würth Elektronik eiSos GmbH, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

Common mode choke – Evaluation

SMD-Ferrite – Application USB

Using an WE-CBF instead of CMC

 $DM \rightarrow 35$ Ohm @ 12 MHz

 $DM \rightarrow 110 \text{ Ohm } @ 12 \text{ MHz}$

WÜRTH ELEK

PCB - LAYOUT RECOMMENDATIONS

- Avoid indirect routing of power traces
- Avoid any kind of couplings \rightarrow "capacitive" or "inductive"
- AC-current should flow across common mode choke
- Route power traces on component layer
- Do not use via's close to unfiltered noisy area

.

32

O

10.0 \

15.0 V

12.0

Input

Output

Switch fsw 500 kHz

Inductor ∆I 40 %

Diode

Vf 0.3 V

Vout 5V

Vin,min 10 V

 \circ

500 kHz

www.we-online.com/redexpert

A Start Würth Elektronik Group Sign in 🛛 😹 English 🔻 Buck Converter Filters: Type = Single 🗙 I_R ≥ 2.00 A 🗙 I_{Sat} ≥ 2.40 A 🗙 5.28 µH ≤ L ≤ 9.80 µH 🗙 × 100 items ⊟ H€ Order Code 🗐 Spec Type RDC.typ Size E Length 目 Width 🔳 I_{sat} PARAMETERS 74438356056 68.0 mΩ 2.80 A 4.60 A 4020 VE-MAPI 2007 Single 5.60 µH 4.1 mm 4.1 mm Ο 2.00 A 40.96 WE-TPC 744071056 5.60 µH 20.0 mΩ 4.00 A 4.00 A 8043 8.0 mm 8.0 mm Single 1207 WE-TPC 7440650068 6.80 µH 25.0 mΩ 4.20 A 3.60 A 1028 10 mm 10 mm 100 Single .30 V 28.5 mΩ 3.80 A 2.80 A 1028 WE-TPC 7440650082 8.20 µH 10 mm 10 mm 1007 Single 5.00 V \sim WE-TPC 7440660062 Single 6.20 µH 16.5 mΩ 4.30 A 4.50 A 1038 10 mm 10 mm 1007 WE-SPC 74408943068 6.80 µH 51.0 mΩ 2.00 A 2.70 A 4838 4.8 mm 4.8 mm 1207 Single Vin,nom 12 V Vin,max 15 V 1 74438356056 744071056 < Share but 2A WE-TPC · Single WE-MAPI · Single 🖷 Free Sample: 5.60 μH · 68.0 mΩ 5.60 uH · 20.0 mΩ 2.80 A · 4.60 A 4.00 A · 4.00 A 💼 Tidy Up Inductance / Current Temperature Rise / Current 100 5 80 Rise (K) Inductance (µH) Display details 60 ature Der 40 20 0 0 1 2 з 5 6 7 0 2 3 4 5 6

Current (A)

Current (A)

Simulation – WEBENCH

http://www.we-online.de/web/de/electronic_components/toolbox_pbs/webench.php

Simulation – LTspice

https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html

Trilogies

1. LTspice Book

 \rightarrow How to use and build spice models

2. Trilogy of Magnetics

→ Design Guide for EMI Filter Design, SMPS & RF Circuits

3. Trilogy of Connectors

 \rightarrow Basic Principles and Connector Design Explanations

4. Abc of Power Modules

- \rightarrow Functionality, Structure and Handling of a Power Module
 - 5. Abc of Capacitors
 - \rightarrow Basic principles, characteristics and capacitor types

Any questions?

Just call us: WE will try to help you

Don't give up!

Globally available. Locally present!

Headquarter in Germany

© All rights reserved by Würth Elektronik eiSos GmbH, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

Würth Elektronik eiSos GmbH & Co. KG

You can reach us:

www.we-online.com

Technical support needed?

