

EMC Filters - From components to design

Listeners are muted

You are muted during the webinar. However, you can ask us questions using the chat function

Information about the Webinar

Duration of the presentation : Qs & As: 30 Min 10 - 15 Min

Any questions? No problem! Email us: eiSos-webinar@we-online.com

⊗ © FEEDBACK Please help us to optimize our webinars! We are looking forward to your feedback.

On our channel And on Würth Elektronik Group www.we-online.com/webinars

Agenda

- Introduction
- The need for filters and the topologies
- Components and technologies
- Choosing a component for a filter
- Design and simulation of a filter
- How to destroy a filter

Agenda

Introduction

- The need for filters and the topologies
- Components and technologies
- Choosing a component for a filter
- Design and simulation of a filter
- How to destroy a filter

Filter

Agenda

- Introduction
- The need for filters and the topologies
- Components and technologies
- Choosing a component for a filter
- Design and simulation of a filter
- How to destroy a filter

The need for filters

Conducted interference

GROUND REFERENCE PLANE

06.09.2019 | Public | EMC Filters - From components to design

Typ. Design of a filter

Differential mode

Common mode

06.09.2019 | Public | EMC Filters - From components to design

Topology

↑ ↓ o ? ↓ o ? **↑ o ?** o ? ↑

Effects on the filter? Filtering through reflection or dissipation Number of reactive components?

06.09.2019 | Public | EMC Filters - From components to design

Agenda

- Introduction
- The need for filters and the topologies
- Components and technologies
- Choosing a component for a filter
- Design and simulation of a filter
- How to destroy a filter

COMMON MODE FILTERS

06.09.2019 | Public | EMC Filters - From components to design

The problem

GROUND REFERENCE PLANE

06.09.2019 | Public | EMC Filters - From components to design

The solution

GROUND REFERENCE PLANE

06.09.2019 | Public | EMC Filters - From components to design

Structure

06.09.2019 | Public | EMC Filters - From components to design

Differential mode

06.09.2019 | Public | EMC Filters - From components to design

Common mode

06.09.2019 | Public | EMC Filters - From components to design

Simulation – 1 winding

06.09.2019 | Public | EMC Filters - From components to design

Simulation – Differential mode

06.09.2019 | Public | EMC Filters - From components to design

Simulation - Zoom – 20x

06.09.2019 | Public | EMC Filters - From components to design

Materials – Inductors (Storage)

Materials – Choke (Filter)

06.09.2019 | Public | EMC Filters - From components to design

© All rights reserved by Wurth Electronics, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

25

Winding styles

Sectional

06.09.2019 | Public | EMC Filters - From components to design

Winding styles – Common mode

06.09.2019 | Public | EMC Filters - From components to design

© All rights reserved by Wurth Electronics, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

www.we-online.com

Winding styles – Differential mode

06.09.2019 | Public | EMC Filters - From components to design

Insertion loss

F Typical Insertion Loss Characteristics:

06.09.2019 | Public | EMC Filters - From components to design

WÜRTH ELEI

Insertion loss – 4 Ports

According to CISPR 17

06.09.2019 | Public | EMC Filters - From components to design

© All rights reserved by Wurth Electronics, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

www.we-online.com

EDIT

Rated current

Rated current	∆T = 40 K	I _R	1000	mA	max.

06.09.2019 | Public | EMC Filters - From components to design

© All rights reserved by Wurth Electronics, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

31

Derating

06 09 2019	Public	EMC F	ilters - From	components	to	design
00.03.2013	I UDIIC		111613 - 110111	componenta	ιU	uesign

© All rights reserved by Wurth Electronics, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

_		5-	
	WÜRTH	ELEK	FRONIK

Properties		Test conditions	Value	Unit	Tol.
Number of windings	Ν		2		
Inductance	L	10 kHz/ 100 mV	0.82	mН	min.
Inductance	L	10 kHz/ 100 mV	1.1	mН	typ.
Rated Current	l _R	@ 70 °C/ ΔT < 55 K	2.6	Α	max.
DC Resistance	R _{DC}	@ 20 °C	0.07	Ω	±15%
Rated Voltage	V _R	50 Hz	250	V (AC)	max.
Insulation Test Voltage	V _T	50 Hz/ 5 mA/ 2 sec.	2000	V (AC)	

General Information:

Saturation

06.09.2019 | Public | EMC Filters - From components to design

06.09.2019 | Public | EMC Filters - From components to design

Construction of a differential mode filter

Material – High losses MnZn Iron powder

Relevant parameter

Frequency characterization Impedance

Saturation? Rated current?

06.09.2019 | Public | EMC Filters - From components to design

06.09.2019 | Public | EMC Filters - From components to design

© All rights reserved by Wurth Electronics, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

www.we-online.com

Agenda

- Introduction
- The need for filters and the topologies
- Components and technologies
- Choosing a component for a filter
- Design and simulation of a filter
- How to destroy a filter

What am I filtering?

Common mode attenuation

06.09.2019 | Public | EMC Filters - From components to design

Differential mode attenuation

06.09.2019 | Public | EMC Filters - From components to design

Working voltage

06.09.2019 | Public | EMC Filters - From components to design

Temperature – WE-CMB

Temperature – WE-CMBNC

06.09.2019 | Public | EMC Filters - From components to design

What am I filtering?

CY – Leakage current

Bild A.2 – Ableitstrom für zweipolige Filter

WE-CLFS Complete Line Filter Solution

Single-Stage

- VR: 250 V (AC/DC)
- 1-Phase Filter
- Climatic Category 25/100/21 (from -25 to +100°C / 21 days Humidity test)
- Fast on connectors (max. 20A)
- Chassis Mounting (M4)

Single-Stage Advanced

Certifications:

06.09.2019 | Public | EMC Filters - From components to design

WE-CLFS Complete Line Filter Solution

WE-CLFS Complete Line Filter Solution

WE-Article number	Rated Current	Inductance	Y-Capacitors	X-Capacitors	bleeding resistor	
	I _R [A]	L1 and L2 [mH]	Cy [nF]	Cx [µF]	R [kOhm]	
810912001	1.5	20	2.2	0.22	1000	
810912003	3	10	3.3	0.33	1000	
810912006	6	10	3.3	0.33	1000	
810912008	8	6	4.7	0.47	680	
810912010	10 🕇	6 🗕	4.7 🕇	0.47 🕂	680 -	
810912012	12	2.2	6.8	0.68	470	
810912014	14	2.2	6.8 🗸	0.68	470	
810912020	20	1	10	1	330	

- During the design of the filter was important to keep the performance through the increasing rated current. The following effects were consider:
 - Inductance is reduced. Thicker wire in the same core Reduced number of turns
 - CY increased to compensate the reduction of nominal inductance
 - CX increased to compensate the reduction in the leakage inductance due to the small number of turns.
 - R reduced to keep $\tau = RC < 1$

06.09.2019 | Public | EMC Filters - From components to design

Agenda

- Introduction
- The need for filters and the topologies
- Components and technologies
- Choosing a component for a filter
- Design and simulation of a filter
- How to destroy a filter

Simulation of a filter for RS485 Specifications - EMI

- Where could most of the radiation come?
- RS-485 max. Cable length → 1,2 km
- 1,2 km= $\frac{\lambda}{4}$ \rightarrow High efficiency Antenna!
- $f_{\lambda} = \frac{c}{\lambda} = \frac{300000 \frac{\text{km}}{\text{s}}}{4.8 \text{km}} = 62.5 \text{ kHz}$

REDEXPERT[®]

Simulation of a filter for RS485 Specifications – Datarate in differential mode

- Datarate max. 12Mbps (6MHz Base frequency with NRZ)
- 3dB frequency defined at 15MHz
- R1=R2=120 Ohm (RS-485)
- C1?
- A = 3dB @ 15MHz!
- After some calculations
- C1=181,38 pF
- What is C1?

Simulation of a filter for RS485 Specifications - Datarate

- Max Capacitance of the channel 181,38 pF
- TVS Diodes = 56 pF
- Cy = 100 pF
- Cx = 100 pF
- Ctotal?
- Ctotal = 100pF + 56/2pF + 100/2pF = 178 pF

Simulation of a filter for RS485

Common Mode

Differential Mode

06.09.2019 | Public | EMC Filters - From components to design

Simulation of a filter for RS485

06.09.2019 | Public | EMC Filters - From components to design

Design your EMC Filter

2

1 mH

10 A

2

6 A

2

7 mΩ

2.2 mH

20 mΩ

3.3 mH

35 mΩ

10 mH

105 mΩ

3 A

2

20 mH

220 mΩ

2 A

4 A

2

L

2

1 mH

13 mΩ

2.2 mH

30 mΩ

6 A

2

4 A

2

2

5 mH

2.5 A

95 mΩ

10 mH

125 mΩ

2 A

2

20 mH

1.5 A

270 mΩ

744824101

744824622

744824433

744824310

744824220

Quantity:

Quantity:

L:

l_a:

R_{DC}:

L:

R_{DC}:

Quantity:

Quantity:

Quantity:

L:

l_a:

R_{pc}:

L:

R_{DC}:

L:

l_s:

R_{pc}:

Agenda

- Introduction
- The need for filters and the topologies
- Components and technologies
- Choosing a component for a filter
- Design and simulation of a filter
- How to destroy a filter

Why your filter is not working

• Order of filter is correct?

• Wrong orientation?

• Wrong mode?:

06.09.2019 | Public | EMC Filters - From components to design

Why your filter is not working

Saturation of inductors? Parasitics in some frequency?

WURTH ELEP

Why your filter is not working

- Dangerous location?
- I/O Feedback

Why your filter is not working

• Parasitics in layout?

- Potting materials?
- Low cost "equivalents"?

= NO IMPEDANCE

06.09.2019 | Public | EMC Filters - From components to design

© All rights reserved by Wurth Electronics, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

61

We are here for you now! Ask us directly via our chat or via E-Mail.

eiSos-webinar@we-online.com