

How do I solve EMI on PCB level?

Speaker: Lorandt Fölkel M.Eng Field Application Engineer & Business Development Manager

lorandt.foelkel@we-online.de

REQUIREMENTS IN EMC

- With the formation of the single European market, standardization was required to remove technical barriers to trade.
- New Approach Directives were introduced to remove these barriers to trade
- 20 regulations and directives:

LVD - Low Voltage Directive 2014/35/EU EMC - Electromagnetic Compatibility 2014/30/EU R.E.D. - Radio Equipped Directive 2014/53/EU MD - Machinery Directive 2014/90/EU

Other International EMC approval marks

- **Federal Communications Commission**
- $\begin{array}{c} \hline \hline \hline \end{array}$

 Voluntary Control Council for Interference

Australian Communications and Media Authority

2018 V.1.1 | Lorandt Fölkel | Public / Confidential | Webinar 2018

Design phase for EMC

- Economical point of view:
- Depends on you when will start to design EMC conform

How can we check the EMC ?

2018 V.1.1 | Lorandt Fölkel | Public / Confidential | Webinar 2018

© All rights reserved by Würth Elektronik eiSos GmbH, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

7

EMI NOISE SOURCES

Representative noise sources

- **Input current caused by voltage ripple** \rightarrow **, Conducted Emission"**
- **Power traces and choke radiate EMI** \rightarrow *, Radiated Emission*"
- **Output current caused by voltage ripple** *"Conducted Emission"*
-
- -
- **Radiated emission will increase by using long input / output lines(cables)**

Noise loops in DC/DC buck converter

- From an EMI point of view, the current loop with the highest di/dt is the input area ("A") , which will generate the most high frequency interference and should be considered the most critical loop in buck converters.
- The di/dt of the current in output area ("B") is not as high as the input area ("A") and normally generates less noise

Noise loops in DC/DC buck converter

- Theoretically, the input and output capacitors are considered ideal at very low impedance for the buck converter switching currents. Unfortunately, in real life, capacitors have ESR (Rs) and ESL (Ls), which increase capacitor impedance and result in extra high frequency voltage drops across the capacitors
- This voltage will induce currents in the supply input line that also have parasitic inductance in addition to the output due the connections to the load

Conducted noise at converter input

Conducted Emission is generated by voltage drop across R_{Sup} and ESRL

 $V_{Noise} = Rsup * lin + ESR * ICap$

- **VNoise = Rsup * Iin + ESR*ICap**
- **Resonance circuit is formed by Lsup, Cin and ESLCin**
	- **f0= 1 / 2Π√(Lsup-ESL)*Cin**
- **Different harmonics due to fundamental frequency from** $f_{DC/DC}$ **and** $f_{Resonance Circuit}$

Conducted noise at converter output

EXECONDERGY CONDUCTED EXAMPLE FIGUREY CONDUCT FIGURE F

 $U_{Noise} = ESR_{Cut} * ICout$

Resonance circuit is formed by C_{Dconverter}, C_{Out}, L_{Converter}, and ESL_{Cout}

$$
f_0 = \frac{1}{2\pi\sqrt{(ESL_{out}) * Count}}
$$

nd Different harmonics due to fundamental frequency from $f_{DC/DC}$ **and** $f_{Resonance Circuit}$

Radiation of PCB traces

- **Power and signal loops have antenna characteristics**
- **Radiation can occur over the entire power and signal loops**
- **Field strength depends on spanned loop, peak value of alternating current, frequency, distance between noise source and noise receiver**
- **Design recommendations:**
	- **Keep power and signal traces as short as possible**
	- **Keep power and signal loops as small as possible**
	- **Route the trace over GND plane**

FILTER DESIGN

"L" Input filter (minimal recommend filter)

Simple L-Filter

- **Input filter reduce current ripple on input line**
- **Input filter reduce differential mode noise on input line**
- **Input filter reduce radiated emission via input traces**

Attention!!! This filter is not efficient to reduce common mode noise on input lines

Calculating rated current I₁

For Example:

$$
\blacksquare I_L = \frac{(5V)(4A)}{(20V)(0,8)} = 1,25A
$$

To avoid saturation & heat considerations choose a choke with higher rating current To avoid losses in efficiency choose a choke with low DCR

Wideband input filter

(recommended filter solution)

- **T-filter recommend for wideband filtering**
	- **Lin for low frequency filtering (DC/DC converter switching frequency)**
	- **Ferrite for high frequency filtering**
	- **Cfilter shorting ACnoise to GND (220pF < Cfilter < 1nF, low ESR)**

Attention!!! This filter is not efficient to reduce common mode noise on input lines

"L / C" output filter (minimal recommended filter)

- **Simple L/C Filter**
	- **Output filter reduce voltage ripple on output traces (Conducted Emission)**
	- **Output filter reduce radiated emission via output traces (Radiated Emission)**
	- **Not an optimal solution for RF powered devices**

Attention!!! This filter is not efficient to reduce common mode noise on output lines

"T" - output filter (recommended filter solution)

- **T-filter recommend for wide bandwidth filtering**
	- **Lfilter for low frequency filtering (DC/DC converter switching frequency)**
	- **Ferrite for high frequency filtering**
	- **This kind of output filter is for powering radio devices high recommended**

Attention!!! This filter is not efficient to reduce common mode noise on output line

²⁰

Decoupling common mode noise

- **For common mode rejection use common mode chokes**
- **For supplying over long distance common mode chokes are recommended**
- **Additional capacitor reduce differential mode noise**
	- **Small value for ceramic capacitor is recommended**
	- **Capacitor and common mode choke act as a LC - filter for differential mode noise**
- **Can be used for input and output lines**

2018 V.1.1 | Lorandt Fölkel | Public / Confidential | Webinar 2018

21

PCB - LAYOUT RECOMMENDATIONS

PCB-Layout recommendations

not recommended recommended

- **Keep PCB traces as short as possible**
- **Avoid indirect trace routing**
- **Avoid any kind coupling "***capacitive", "inductive"*
- **AC-current should flow across capacitor**
- **Short way for AC-current direct to GND (place double via's to GND)**

PCB-Layout recommendations

- **Avoid indirect routing of power traces**
- Avoid any kind of couplings \rightarrow "capacitive", "inductive"
- **AC-current should flow across common mode choke**
- **Route power traces on component layer**
- **Do not use vias**

SHIELD VS. UNSHIELD

Magnetic field leakage

2018 V.1.1 | Lorandt Fölkel | Public / Confidential | Webinar 2018

Radiation by inductor

WE - PD2 unshielded 10µH, 2MHz Clock, 1A

WE – PD shielded 10µH, 2MHz Clock, 1A

19dBm difference

2018 V.1.1 | Lorandt Fölkel | Public / Confidential | Webinar 2018

Magnetic leakage shielded vs. unshielded

2018 V.1.1 | Lorandt Fölkel | Public / Confidential | Webinar 2018

Magnetic Fields – Conducted Emission Measurement

Buck Converter Iout=2.5A @fsw 85-115KHz

2018 V.1.1 | Lorandt Fölkel | Public / Confidential | Webinar 2018

29

Magnetic Fields – Conducted Emission Measurement

Power supply V 1.1 $[dBµV]$ 100 80 60 **PCB** 40 IC₁ Feedback Input $\stackrel{+}{\supset}$ $\stackrel{+}{\supset}$ L4-7447709151 14960 20 $|C1$ 50 uH 100 \log \circ -10 4M 5M 300k 400k 600k 1M $2M$ 3M 150k $[Hz]$ C3 ЗЗг GND

2018 V.1.1 | Lorandt Fölkel | Public / Confidential | Webinar 2018

 $+5U$

100nF

Schematic

REDEXPERT

www.we-online.com/redexpert

Start Würth Elektronik Group Sign in **English** ▼

Inductors REDEXPERT[®]

2018 V.1.1 | Lorandt Fölkel | Public / Confidential | Webinar 2018

31

Simulation – WEBENCH

• http://www.we-online.de/web/de/electronic_components/toolbox_pbs/webench.php

Simulation – LTSpice IV

• [http://www.linear.com/designtools/software/#LTspice](http://www.linear.com/designtools/software/)

Trilogies

• 1. **LTspice Book**

\rightarrow How to use and build spice models

• 2. **Trilogy of Magnetics**

 \rightarrow Design Guide for EMI Filter Design, SMPS & RF Circuits

• 3. **Trilogy of Connectors**

 \rightarrow Basic Principles and Connector Design Explanations

• 4. **ABC of Power Modules**

 \rightarrow Functionality, Structure and Handling of a Power Module

• 5. **ABC of Capacitors**

 \rightarrow Basic principles, characteristics and capacitor types

If you still have questions?

Just call us: we try to help you

Don't give up !!!

Globally available. Locally present!

2018 V.1.1 | Lorandt Fölkel | Public / Confidential | Webinar 2018

Würth Elektronik eiSos GmbH & Co.KG

You can reach us:

Tel.: +1 (605) 886 4385 Fax: (605) 886-4486

E-Mail: eisos-us@we-online.com

www.we-online.com

2016 V.1.0 | Lorandt Fölkel | Public / Confidential | EMV Messago Düsseldorf 2016

