

High frequency three-phase PFC solutions for high power charging stations

Francesco Gennaro

francesco.gennaro@st.com

Power Conversion Unit

System Research and Applications

April 26th, 2021

Agenda

Introduction

- Charging stations are the companion of Car Electrification
- Their intensive installation will impact on the Grid infrastructure and management
- The presentation deals with a building block of a DC Charging station, the Active Front End, which is the interface of the Charging Station with the grid
- Power Quality performance, efficiency and size with reference to cost are the main parameters to be considered
- Several power converters topologies for high power are available but not able to fullfil all the requirements
- Silicon Carbide introduction in the market is changing the game, making possible a revival of simple three phase power converters

Charging Stations: an energy driven application

life.augmented

Source: McKinsey

Charging Stations

V_B (+)

VB (-)

Charging station DC Fast Charger

Single 20...50kW block

Power Factor Correction

Power Factor Correction

- The Front End converter has to control the current drawn from the grid, ideally showing a pure resistive behaviour. As a result, the input current has to be in phase with the grid voltage in order to take only active power, P.
- Power Quality aspects are considered in terms of apparent power, S, and harmonc distorsion.
- Power Factor, **PF**, and Total Harmonic Distorsion, **THD**, are a metric for the performance of the Front End converter.
- International standards apply for specific product segment, e.g. EN6100-3-2.

Power Factor $PF = \frac{P}{S}$ Total Harmonic Distorsion $THD_i = \frac{\sqrt{\sum_{n \neq 1} I_{n,rms}}}{I_{1,rms}}$ $PF = \frac{\cos \varphi}{\sqrt{1 + THD_i^2}}$

Three-Phase Active PFC From scientific literature*

- Several topologies are available for active PFC in 3 phase power systems applications.
- The simplest solutions is represented by the boost converter in DCM:

• Cons: high inductance value, high peak current value, high THD.

Three-phase active PFC – Vienna rectifier

from literature*

 Going through the Phase Modular Systems (Delta & Y converters), the winning topology is the «Vienna rectifier», in several minor variants, taking advantage of multi-level approach: low input current ripple, lower voltage stress on switches and output capacitors (V₀/2).

• Cons: complex switching pattern, high side driving, output capacitors voltage balancing.

Single phase modules in 3-phase connection

A modular approach with 3 single phase modules is sometimes considered for power level up to 22kW, allowing single phase operation for domestic charging.

Semiconductor Technologies

Semiconductor Technologies

Sic MOSFETs

SiC benefits and advantages

SiC Technology Benefits SiC vs Conventional Silicon IGBT

Higher Performance & Voltage Operation

- Extremely low power losses
- High efficiency at low current
- Intrinsic SiC body diode (4 quadrant operation)

Higher Operating Frequency

- Lower switching losses
- Excellent diode switching performance

Higher Operating Temperature

• Operating up to 200°C junction

SiC Advantages

Electrification – Faster and more efficient charging

Efficiency gain in average	Switching losses		Chip size	Total loss		Switching frequency
From ~2% ~7x lower (high load) to ~10% (low load)			~5x smaller	~50% lower Lower		~ 510 times higher System Cost
~7x reduced form factor sy			1% cooling tem down sizing		~Simpler Sub- systems: smaller passives, no external freewheeling diode	

Relevance of Package Technology

- The package technology is fundamental for high frequency operations.
 - Electrical aspects parasitics related:
 - Internal connections (layout and wire bonding);
 - Board layout.
 - Thermal aspects
 - Operating temperature (max operating junction temperature)
 - Heat dissipation capability;
 - Heat sink mounting.
 - EMI aspects
 - Noise and disturbance;
 - Conducted and radiated emissions.

Three-phase PFC Topologies

Three-phase PFC converter Topology comparison

- + All 650V rated devices! → lower cost
- 2 devices in the main current path (D1&D2)
- \rightarrow lower efficiency

life.augmented

- + 1 devices in the main current path (D2)
 → Higher efficiency
- Need 1200V diodes (D2), typically SiC.
- → Higher cost

Topology comparison Efficiency comparison @ P_{out}=30 kW

Simulated efficiency @ $T_i = 125^{\circ}C$, considering <u>only semiconductor losses</u>.

life.augmented

SiC Enabled Topologies

Vienna Rectifier – Type 2

Bidirectional Vienna Rectifier – 3LTT

SiC Enabled Topologies Bidirectional converters

3LTT Converter

Full Bridge Boost Converter

Specifications

V _{in}	400 Vac			
V _{out}	800 Vdc			
P _{0ut_max}	13 kW			
F _s	70 kHz			
I _{ripple}	2.5A			
V _{out_ripple}	10 Vpp			

$$L_{N} = \frac{V_{O}}{f_{s} * \Delta_{iL}} \frac{\sqrt{3}}{4} M \left(1 - M \frac{\sqrt{3}}{2} \right) = 0.475 m H$$
$$\Delta_{iL} = 2.5 A \qquad M = \frac{\widehat{U_{N}}}{\widehat{V_{O}}/2} = 0.815$$
$$I_{Lrms} = \frac{P_{DC}}{3V_{rms}} = 17,4 A_{rms}$$

life.augmented

Bidirectional PFC Topology Modulation related converter

22

SiC Enabled Topologies Efficiency comparison

Semiconductor efficiency, f_s=10...100kHz

3LTT converter

SiC Enabled Topologies 3L Vs 2L comparison

Pros

- Losses distributed over more components
- Higher efficiency at high switching frequency
- Lower inductor volume (35%)

Cons

- More components
- Higher complexity
- Output voltage balancing
- Expected higher cost

	2LC	3LTTC
PWM (complementary)	3	6 or (3 compl+3 single)
Gate Driver	6	12 o 9
Isolated DC/DC	6	12 o 9

SiC Enabled Topologies 3LTT with Digital control

Bidirectional PFC Topology From grid to battery - Control Strategy AC/DC

Bidirectional PFC – From battery to grid Control Strategy DC/AC

Bidirectional PFC - Control Strategy

life.augmented

12kW 3L T-Type Converter PFC

Main specs

- Pout = 12kW @ Vin = 380Vac & Vout =800V
- PF > 0.98 @ 20% load (target)
- THD < 5% @ 20% load (target)
- p>97% @ 20% load (target)
- CCM decoupling current control loop
- Active & Reactive power control
- Grid Connection capability
- Switching frequency = 70kHz
- $I_ripple = 2.5A$
- VDC_ripple = 10Vpp

Key products

- STM32G474 (32 bit Microcontroller)
- **SCTW40N120G2V** (70mΩ 1200V SiC MOSFET)
- **SCTW35N65G2V** (55mΩ 650V SiC MOSFET)
- STGAP2S (Galvanic Isolated Gate Driver)
- VIPer26K (High Voltage Converter)
- Wurth Power inductor 750344313

MCU for High Frequency Operations STM32G4

High Resolution Timer

3L T-Type Bidirectional PFC Converter Prototype

15kW Power board

3L T-Type Bidirectional PFC Main Experimental Results

Efficiency vs Output Power

 $V_{IN-LN} = 230Vac - V_{OUT} = 800V$

PFC inductor requirements

- Low thermal resistance
- Low parasitic capacitance
- Offline working voltage
- Low leakage / low radiated magnetic field
- Compact design and easy to mount
- High efficiency for high current @ high frequency designs

Kunde / customer : Artikelnummer / part number : 750344313

Bezeichnung :

description : PFC Inductor

DATUM / DATE : 2020-01-21

A Mechanische Abmessungen / dimensions :

	TOR 57/36/14	
OD	70.00 Max	mm
Width	56.00 Max	mm
Pin	4.00 ± 1.00	mm
		mm
		mm

B Elektrische Eigenschaften / electrical properties :

B Elektrische Eigenschaften / electrical properties :					C Lötpad / soldering spec. :	
Eigenschaften / properties	Testbedingungen / test conditions		Wert / value	Einheit / unit	tol.	
Induktivität / inductance	10 kHz / 0,1 V	L _{N1}	514.0	μH	±20%	
DC-Widerstand 1/ DC-resistance 1	@ 20°C	R _{DC 1}	60.0	mΩ	max.	
Sättigungsstrom N1/ saturation current N1	dL/L=30%	I _{sat N1}	26.00	A	typ.	.236 x .063(2) 2,756 [6.00 x 1.60] [70.00]
Rated current N1	40 degree Celcuis Temp. Rise	I _{rated N1}	17.20	A	typ.	│ \
Prüfspannung / test voltage	N1=>Core	HV	1.000	kV _{DC}		RECOMMENDED P.C. PATTERN, COMPONENT SIDE
Rated Voltage	N1		400.00	V _{AC}	Min.	

Relative Cost Factor

Package (WE Part Number)	Relative Cost Factor
EE65 (750316915)	1
EE80 (750317156)	3.85
Tor (750344310)	0.72

Conclusions

- Charging stations are an emerging application in the Industrial market driven by Car Electrification;
- The demand of **DC charger** with output power up to 50kW is increasing at fast pace;
- **Bidirectional** functionality is becoming a requested feature due to Smart Grid implementation of V2G architecture for Grid regulation and storage;
- The **Front End converter** represents the connection with the Grid and has to manage it with high efficiency and smart operations at reasonable cost;
- The introduction of **Silicon Carbide** in Power MOSFET technology has disrupted the efficiency paradigm of high frequency operations;
- Well-known power converter topologies have been rivitalized by **SiC MOSFETs** despite of Si IGBT lower cost thanks to superior performance in terms of efficiency, size and overall cost.

Thank you

francesco.gennaro@st.com

© STMicroelectronics - All rights reserved. The STMicroelectronics corporate logo is a registered trademark of the STMicroelectronics group of companies. All other names are the property of their respective owners.

