IC manufacturers STMicroelectronics

IC manufacturers (99)

STMicroelectronics L9963E | Demoboard AEK-POW-BMS63EN

Battery management system module based on L9963E

Overview

TopologyBattery Management System
IC revision1

Description

The AEK-POW-BMS63EN is a battery management system (BMS) evaluation board that can handle from 1 to 31 Li-ion battery nodes. Each battery node manages from 4 to 14 battery cells, for a voltage range between 48 V and 800 V.The board is based on the L9963E, which is designed for operation in both hybrid (HE) and full electric (BE) vehicles using lithium battery packs, but its use can be extended to other Transportation and Industrial applications.The main activity of the L9963E is monitoring cells and battery node status through stack voltage measurement, cell voltage measurement, temperature measurement, and coulomb counting. Measurement and diagnostic tasks can be executed either on demand or periodically, with a programmable cycle interval. Measurement data are available for an external microcontroller to perform charge balancing and to compute the state of charge (SOC) and the state of health (SOH).The main functions of a standard BMS are monitoring and protecting the battery pack.The monitoring function is related to the measurement of the battery current, voltage, and temperature. The protection function brings the system to a safety state in case of under or overvoltage and overheating.The AEK-POW-BMS63EN provides an elaborate monitoring network to sense the voltage, current, and temperature of each cell. This sensing allows elaborating the SOC of each battery cell and, consequently, the state of charge of all battery packs. The SOC allows assessing the remaining battery capacity, which equates to the remaining driving range.For maintenance reasons, it is important to monitor the SOC estimation over time. According to our algorithm for the SOC calculation, the more the SOC differs from its nominal value (that is, its value when the batteries are new), the more a cell of the battery pack risks over-discharge. Thus, the SOC evolution over time allows asserting the state of health (SOH) of a cell or a battery pack to spot early indications that a cell is at risk of over-discharge or overcharging.The SOC of a battery cell is required to maintain its safe operation and duration during charge, discharge, and storage. However, SOC cannot be measured directly and is estimated from other measurements and known parameters (such as characterization curves or look-up tables). This information on the battery cells is necessary to determine how the voltage varies according to the current, the temperature, etc., on the basis of the battery chemical composition and production lot used.The AEK-POW-BMS63EN can work in two different daisy chain topologies: centralized and dual access ring.In a centralized daisy chain configuration, a series of BMS is connected to an MCU board through a single transceiver connected to the AEK-POW-BMS63EN isolated ISOLport. The BMS are connected to each other through the isolated ISOH port.The MCU communicates with the AEK-COM-ISOSPI1 hosted L9963T transceiver through the SPI protocol. The transceiver converts these signals into ISO SPI signals to communicate with the BMS.The AEK-COM-ISOSPI1 allows converting SPI signals in isolated SPI signals, thereby reducing the number of necessary wires from 4 to 2 and implementing differential communication for higher noise immunity.A dual access ring configuration is also possible by adding another transceiver that makes the communication bidirectional. The secondary ring is used as a backup in case the primary ring fails. Data moves in opposite directions around the rings, and each ring remains independent of the other unless the primary ring fails. The two rings are connected to continue the flow of data traffic.In AutoDevKit ecosystem software package, we created two example demos (one for centralized and one for dual access ring configuration) to elaborate SOC and SOH, using Li-ion batteries. Battery packs may have different SOCs, and balancing is necessary to bring them all to the same charge level. After detecting the lowest charge in the battery pack, all the other battery nodes are discharged to reach its level. The demos explain how to activate the internal MOSFETs of the L9963E, which short-circuit the cell on an external dissipation resistor to discharge it. Passive cell balancing can be performed either via the L9963E internal MOSFETs or via external MOSFETs/resistors. The controller can either manually control the balancing drivers or start a balancing task with a fixed duration. In the second case called silent mode, the balancing may be programmed to continue even when the IC enters a low power mode, to avoid unnecessary current absorption from the battery pack. The balancing function is necessary to lengthen the battery capacity and its duration.Different MCUs can be used. In our demos we used the AEK-MCU-C4MLIT1, while other ASIL-B and ASIL-D microcontrollers of the SPC58 Chorus family are supported.

Typical applications

  • Battery Management System (BMS)
  • Battery Management System (BMS) for Electro mobility

Products

Order Code Data­sheet Simu­lation Downloads Status Product seriesλDom typ.
(nm)
Emitting ColorλPeak typ.
(nm)
IV typ.
(mcd)
VF typ.
(V)
Chip Technology50% typ.
(°)
Pitch
(mm)
MountIR
(A)
Working Voltage
(V (AC))
PCB/Cable/PanelContact Resistance
(mΩ)
Tol. RL
(mm)
Stranded Wire Section (AWG)Stranded Wire Section (Metric)Qty.
(pcs)
CTol. CVR
(V (DC))
SizeOperating TemperatureQDF
(%)
RISOCeramic TypeW
(mm)
Fl
(mm)
SW
(mm)
TiFlammability RatingApplicationInterface TypePins (Value)
(pcs)
RowsH
(mm)
GenderTypeIR
(A)
PackagingColor Samples
150080GS75000SPEC
7 files Active i| Production is active. Expected lifetime: >10 years.WL-SMCW SMT Mono-color Chip LED Waterclear 525 Green 515 450 3.2 InGaN 140 SMT 2 4000 0805 -40 °C up to +85 °C 1.25 0.7 Tape and Reel
885012006053SPEC
8 files Active i| Production is active. Expected lifetime: >10 years.WCAP-CSGP MLCCs 50 V(DC) 1.6 400022 pF ±5% 50 0603 -55 °C up to +125 °C 84010 GΩ NP0 Class I 0.8 0.4 0.8 7" Tape & Reel
885012006054SPEC
8 files Active i| Production is active. Expected lifetime: >10 years.WCAP-CSGP MLCCs 50 V(DC) 1.6 400033 pF ±5% 50 0603 -55 °C up to +125 °C 100010 GΩ NP0 Class I 0.8 0.4 0.8 7" Tape & Reel
885012206085SPEC
8 files Active i| Production is active. Expected lifetime: >10 years.WCAP-CSGP MLCCs 50 V(DC) 1.6 40002.2 nF ±10% 50 0603 -55 °C up to +125 °C 2.510 GΩ X7R Class II 0.8 0.4 0.8 7" Tape & Reel
885012206087SPEC
8 files Active i| Production is active. Expected lifetime: >10 years.WCAP-CSGP MLCCs 50 V(DC) 1.6 40004.7 nF ±10% 50 0603 -55 °C up to +125 °C 2.510 GΩ X7R Class II 0.8 0.4 0.8 7" Tape & Reel
885012206088SPEC
8 files Active i| Production is active. Expected lifetime: >10 years.WCAP-CSGP MLCCs 50 V(DC) 1.6 40006.8 nF ±10% 50 0603 -55 °C up to +125 °C 2.510 GΩ X7R Class II 0.8 0.4 0.8 7" Tape & Reel
885012206089SPEC
8 files Active i| Production is active. Expected lifetime: >10 years.WCAP-CSGP MLCCs 50 V(DC) 1.6 400010 nF ±10% 50 0603 -55 °C up to +125 °C 2.510 GΩ X7R Class II 0.8 0.4 0.8 7" Tape & Reel
885012206093SPEC
8 files Active i| Production is active. Expected lifetime: >10 years.WCAP-CSGP MLCCs 50 V(DC) 1.6 400047 nF ±10% 50 0603 -55 °C up to +125 °C 310 GΩ X7R Class II 0.8 0.4 0.8 7" Tape & Reel
885012206094SPEC
8 files Active i| Production is active. Expected lifetime: >10 years.WCAP-CSGP MLCCs 50 V(DC) 1.6 400068 nF ±10% 50 0603 -55 °C up to +125 °C 37.4 GΩ X7R Class II 0.8 0.4 0.8 7" Tape & Reel
885012206095SPEC
8 files Active i| Production is active. Expected lifetime: >10 years.WCAP-CSGP MLCCs 50 V(DC) 1.6 4000100 nF ±10% 50 0603 -55 °C up to +125 °C 35 GΩ X7R Class II 0.8 0.4 0.8 7" Tape & Reel
885012207079SPEC
7 files Active i| Production is active. Expected lifetime: >10 years.WCAP-CSGP MLCCs 25 V(DC) 2 30002.2 µF ±10% 25 0805 -55 °C up to +125 °C 100.05 GΩ X7R Class II 1.25 0.5 1.25 7" Tape & Reel
885012207103SPEC
8 files Active i| Production is active. Expected lifetime: >10 years.WCAP-CSGP MLCCs 50 V(DC) 2 30001 µF ±10% 50 0805 -55 °C up to +125 °C 100.1 GΩ X7R Class II 1.25 0.5 1.25 7" Tape & Reel
885012208094SPEC
8 files Active i| Production is active. Expected lifetime: >10 years.WCAP-CSGP MLCCs 50 V(DC) 3.2 20004.7 µF ±10% 50 1206 -55 °C up to +125 °C 100.02 GΩ X7R Class II 1.6 0.5 1.6 7" Tape & Reel
624030213322SPEC
3 files Active i| Production is active. Expected lifetime: >10 years.WR-WTB 2.00 mm Female Dual Row Terminal Housing w. positive locking 2 Cable 33.4 -25 °C up to +85 °C1000 MΩ 30 Female Terminal Housing Bag
62403021722SPEC
6 files Active i| Production is active. Expected lifetime: >10 years.WR-WTB 2.00 mm Male Dual Row Horizontal Shrouded Header w. positive locking 2 THT 3 250 PCB 20 max. 33.4 -25 °C up to +85 °C1000 MΩ 30 Male Horizontal 3 Tube White
970080365SPEC
3 files Active i| Production is active. Expected lifetime: >10 years.WA-SPAII Plastic Spacer Stud, metric, internal/ internal 8 -30 °C up to +110 °C 6 M3 UL94 HB Bag Black
62400113722SPEC
3 files Active i| Production is active. Expected lifetime: >10 years.WR-WTB 2.00 mm Female Dual Row Crimp Contact 2 3 250 Cable 20 max. 28 to 22 (AWG) 0.081 to 0.326 (mm²) 10000 -25 °C up to +85 °C Female Crimp Terminal 3 Big Reel
60900213421SPEC
3 files Active i| Production is active. Expected lifetime: >10 years.WR-PHD 2.54 mm Multi-Jumper Jumper with Test Point 2.54 250 20 max. 2.44 -40 °C up to +125 °C1000 MΩ 1 Jumper 3 Bag Black
61300211121SPEC
6 files Active i| Production is active. Expected lifetime: >10 years.WR-PHD 2.54 mm THT Pin Header 2.54 THT 250 20 max. 5.08 -40 °C up to +105 °C1000 MΩ 2 Single Pin Header Straight 3 Bag
61300311121SPEC
6 files Active i| Production is active. Expected lifetime: >10 years.WR-PHD 2.54 mm THT Pin Header 2.54 THT 250 20 max. 7.62 -40 °C up to +105 °C1000 MΩ 3 Single Pin Header Straight 3 Bag
61400416021SPEC
6 files Active i| Production is active. Expected lifetime: >10 years.WR-COM USB 2.0 Type A Horizontal THT 1.5 30 20 max. -40 °C up to +105 °C1000 MΩ USB 2.0 Type A 4 Receptacle Horizontal 1.5 Tray White
885012206102SPEC
6 files Active i| Production is active. Expected lifetime: >10 years.WCAP-CSGP MLCCs 100 V(DC) 1.6 4000100 pF ±10% 100 0603 -55 °C up to +125 °C 2.510 GΩ X7R Class II 0.8 0.4 0.8 7" Tape & Reel
885012206120SPEC
6 files Active i| Production is active. Expected lifetime: >10 years.WCAP-CSGP MLCCs 100 V(DC) 1.6100 nF ±10% 100 0603 -55 °C up to +125 °C 51 GΩ X7R Class II 0.8 0.4 0.8 7" Tape & Reel
885012209073SPEC
8 files Active i| Production is active. Expected lifetime: >10 years.WCAP-CSGP MLCCs 50 V(DC) 3.210 µF ±10% 50 1210 -55 °C up to +125 °C 100.01 GΩ X7R Class II 2.5 0.6 2.5 7" Tape & Reel
885012209071SPEC
6 files Active i| Production is active. Expected lifetime: >10 years.WCAP-CSGP MLCCs 100 V(DC) 3.22.2 µF ±10% 100 1210 -55 °C up to +125 °C 50.05 GΩ X7R Class II 2.5 0.75 2.5 7" Tape & Reel
97790403111SPEC
3 files Active i| Production is active. Expected lifetime: >10 years.WA-SCRW Pan Head Screw w. cross slot M3 4 2000 -30 °C up to +85 °C UL94 V-2 Bulk Natural
885012206125SPEC
7 files Active i| Production is active. Expected lifetime: >10 years.WCAP-CSGP MLCCs 50 V(DC) 1.6220 nF ±5% 50 0603 -55 °C up to +125 °C 102.3 GΩ X7R Class II 0.8 0.4 0.8 7" Tape & Reel
Samples
Order Code Data­sheet Simu­lation Downloads Status Product seriesλDom typ.
(nm)
Emitting ColorλPeak typ.
(nm)
IV typ.
(mcd)
VF typ.
(V)
Chip Technology50% typ.
(°)
Pitch
(mm)
MountIR
(A)
Working Voltage
(V (AC))
PCB/Cable/PanelContact Resistance
(mΩ)
Tol. RL
(mm)
Stranded Wire Section (AWG)Stranded Wire Section (Metric)Qty.
(pcs)
CTol. CVR
(V (DC))
SizeOperating TemperatureQDF
(%)
RISOCeramic TypeW
(mm)
Fl
(mm)
SW
(mm)
TiFlammability RatingApplicationInterface TypePins (Value)
(pcs)
RowsH
(mm)
GenderTypeIR
(A)
PackagingColor Samples